Home About Browse Policies Statistics

Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents / Mohd Sufri Mastuli

Mastuli, Mohd Sufri and Kamarulzaman, Norlida and Nawawi, Mohd Azizi and Mahat, Annie Maria and Rusdi, Roshidah and KAmarudin, Norashikin (2014) Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents / Mohd Sufri Mastuli. Nanoscale Research Letters, 9. pp. 1-9. ISSN 1556-276X

[thumbnail of 32546.pdf] Text

Download (1MB)


In the preparation of nanostructured materials, it is important to optimize synthesis parameters in order to obtain the desired material. This work investigates the role of complexing agents, oxalic acid and tartaric acid, in the production of MgO nanocrystals. Results from simultaneous thermogravimetric analysis (STA) show that the two different synthesis routes yield precursors with different thermal profiles. It is found that the thermal profiles of the precursors can reveal the effects of crystal growth during thermal annealing. X-ray diffraction confirms that the final products are pure, single phase and of cubic shape. It is also found that complexing agents can affect the rate of crystal growth. The structures of the oxalic acid and tartaric acid as well as the complexation sites play very important roles in the formation of the nanocrystals. The complexing agents influence the rate of growth which affects the final crystallite size of the materials. Surprisingly, it is also found that oxalic acid and tartaric acid act as surfactants inhibiting crystal growth even at a high temperature of 950 degrees C and a long annealing time of 36 h. The crystallite formation routes are proposed to be via linear and branched polymer networks due to the different structures of the complexing agents.


Item Type: Article
Uncontrolled Keywords: MgO, nanostructured materials, crystal growth, sol-gel process, complexing agent
Subjects: Q Science > QD Chemistry
T Technology > TP Chemical technology
Journal or Publication Title: Nanoscale Research Letters
Collections: WoS
Access Type: Open Access
URI: http://oarr.uitm.edu.my/id/eprint/32546

Actions (login required)

View Item
View Item



Downloads per month over past year