The impact of conjugated wpi-lactose on the physicochemical and functional properties and in-vitro infant digestion

Proteins are crucial for body metabolism, are abundant in whey proteins isolate (WPI) with a high concentration of essential amino acids. The natural form of WPI has limitations as it is susceptible to temperature, pH changes and digestibility in gastrointestinal tract of infant. The influence of pr...

وصف كامل

التفاصيل البيبلوغرافية
المؤلف الرئيسي: Sarizan Sabari
التنسيق: أطروحة
اللغة:الإنجليزية
الإنجليزية
منشور في: 2023
الموضوعات:
الوصول للمادة أونلاين:https://eprints.ums.edu.my/id/eprint/40860/1/24%20PAGES.pdf
https://eprints.ums.edu.my/id/eprint/40860/2/FULLTEXT.pdf
_version_ 1846217507327705088
author Sarizan Sabari
author_facet Sarizan Sabari
author_sort Sarizan Sabari
description Proteins are crucial for body metabolism, are abundant in whey proteins isolate (WPI) with a high concentration of essential amino acids. The natural form of WPI has limitations as it is susceptible to temperature, pH changes and digestibility in gastrointestinal tract of infant. The influence of protein processing is significant but is dependent upon the variety of parameters and controlled conditions. Thus, the aim of the current study to evaluate the physicochemical and functional properties of conjugates proteins of WPI-Lactose (WPI-Lac) versus native WPI under the optimized condition (temperature of reaction is 40℃, 1,3,5 and 7 days of incubation time, 0.8 of water activity (Aw) and a protein-to-disaccharide ratio of 1:0.4) of Maillard reaction (MR). This study also investigates the impact of the conjugated proteins-lactose in proteins digestibility on infant static in- vitro digestion model. Amongst those conjugates p roteins, the WPI WPI-Lac day 3 is showed the particularly acceptable browning colour intensity of Maillard reaction products (MRPs) (0.784±0.000, 290nm), (0.197±0.000, 420nm) and have colour index (ΔE) (90.37) and chroma value (C) (17.96 ) increased with the incubation time. The conjugated proteins increased in molecular weight and were elucidated in SDS SDS-PAGE gel by slightly shifting upwards and sm earing from day 1 to day 7 on incubation time (>20 kDa). 75% of the free amino group available in WPI WPI-Lac (day 3) which indicated only 25% of leucine was conjugated with lactose and this prevent the advancedadvanced-stage reaction of MR. The conjugates protein cl early changed (p<0.05) in Amide I ( 1634.52 cm-1) and Amide II (1500 cm cm-1) from day 0 to day 7. Higher solubility of protein is shown in WPI-Lac (day 3) at 36.27%, while the ABTS+ radical scavenging activity of conjugates protein significantly increased (p<0.05) with incubation time from 10.14% (day 0) to 61.94% (day 7), respectively. In The heating treatment of WPI-Lac (day 3) by MR and conjugated with lactose under optimized conditions of MR has enhanced the digestibility of the α-Lac which were completely disappear after 5 minutes of digestion in gastric digestion. Additionally, after 60 minutes, the α-Lac of WPI-Lac (day 3) was breakdown into smaller peptides (<10kDa) as shown in the SDS-PAGE. In in-vitro duodenal digestion, β-Lg of WPI-Lac (day 3) was mostly completely degraded at 100 minutes of digestion. Thus, dry MR of protein at 40 °C for three days with 0.8 water activity and conjugated with lactose may be a useful alternative for improving the digestibility of protein in infants' digestive systems. Additionally, due to the ability of β-Lg to be digested in the duodenal digestion phase, conjugated proteins have a significant potential to give strong impact on the release of the immunogenic protein.
format Thesis
id oai:eprints.ums.edu.my:40860
institution Universiti Malaysia Sabah
language English
English
publishDate 2023
record_format eprints
spelling oai:eprints.ums.edu.my:408602024-09-09T03:04:43Z https://eprints.ums.edu.my/id/eprint/40860/ The impact of conjugated wpi-lactose on the physicochemical and functional properties and in-vitro infant digestion Sarizan Sabari TX341-641 Nutrition. Foods and food supply Proteins are crucial for body metabolism, are abundant in whey proteins isolate (WPI) with a high concentration of essential amino acids. The natural form of WPI has limitations as it is susceptible to temperature, pH changes and digestibility in gastrointestinal tract of infant. The influence of protein processing is significant but is dependent upon the variety of parameters and controlled conditions. Thus, the aim of the current study to evaluate the physicochemical and functional properties of conjugates proteins of WPI-Lactose (WPI-Lac) versus native WPI under the optimized condition (temperature of reaction is 40℃, 1,3,5 and 7 days of incubation time, 0.8 of water activity (Aw) and a protein-to-disaccharide ratio of 1:0.4) of Maillard reaction (MR). This study also investigates the impact of the conjugated proteins-lactose in proteins digestibility on infant static in- vitro digestion model. Amongst those conjugates p roteins, the WPI WPI-Lac day 3 is showed the particularly acceptable browning colour intensity of Maillard reaction products (MRPs) (0.784±0.000, 290nm), (0.197±0.000, 420nm) and have colour index (ΔE) (90.37) and chroma value (C) (17.96 ) increased with the incubation time. The conjugated proteins increased in molecular weight and were elucidated in SDS SDS-PAGE gel by slightly shifting upwards and sm earing from day 1 to day 7 on incubation time (>20 kDa). 75% of the free amino group available in WPI WPI-Lac (day 3) which indicated only 25% of leucine was conjugated with lactose and this prevent the advancedadvanced-stage reaction of MR. The conjugates protein cl early changed (p<0.05) in Amide I ( 1634.52 cm-1) and Amide II (1500 cm cm-1) from day 0 to day 7. Higher solubility of protein is shown in WPI-Lac (day 3) at 36.27%, while the ABTS+ radical scavenging activity of conjugates protein significantly increased (p<0.05) with incubation time from 10.14% (day 0) to 61.94% (day 7), respectively. In The heating treatment of WPI-Lac (day 3) by MR and conjugated with lactose under optimized conditions of MR has enhanced the digestibility of the α-Lac which were completely disappear after 5 minutes of digestion in gastric digestion. Additionally, after 60 minutes, the α-Lac of WPI-Lac (day 3) was breakdown into smaller peptides (<10kDa) as shown in the SDS-PAGE. In in-vitro duodenal digestion, β-Lg of WPI-Lac (day 3) was mostly completely degraded at 100 minutes of digestion. Thus, dry MR of protein at 40 °C for three days with 0.8 water activity and conjugated with lactose may be a useful alternative for improving the digestibility of protein in infants' digestive systems. Additionally, due to the ability of β-Lg to be digested in the duodenal digestion phase, conjugated proteins have a significant potential to give strong impact on the release of the immunogenic protein. 2023 Thesis NonPeerReviewed text en https://eprints.ums.edu.my/id/eprint/40860/1/24%20PAGES.pdf text en https://eprints.ums.edu.my/id/eprint/40860/2/FULLTEXT.pdf Sarizan Sabari (2023) The impact of conjugated wpi-lactose on the physicochemical and functional properties and in-vitro infant digestion. Masters thesis, Universiti Malaysia Sabah.
spellingShingle TX341-641 Nutrition. Foods and food supply
Sarizan Sabari
The impact of conjugated wpi-lactose on the physicochemical and functional properties and in-vitro infant digestion
title The impact of conjugated wpi-lactose on the physicochemical and functional properties and in-vitro infant digestion
title_full The impact of conjugated wpi-lactose on the physicochemical and functional properties and in-vitro infant digestion
title_fullStr The impact of conjugated wpi-lactose on the physicochemical and functional properties and in-vitro infant digestion
title_full_unstemmed The impact of conjugated wpi-lactose on the physicochemical and functional properties and in-vitro infant digestion
title_short The impact of conjugated wpi-lactose on the physicochemical and functional properties and in-vitro infant digestion
title_sort impact of conjugated wpi lactose on the physicochemical and functional properties and in vitro infant digestion
topic TX341-641 Nutrition. Foods and food supply
url https://eprints.ums.edu.my/id/eprint/40860/1/24%20PAGES.pdf
https://eprints.ums.edu.my/id/eprint/40860/2/FULLTEXT.pdf
url-record https://eprints.ums.edu.my/id/eprint/40860/
work_keys_str_mv AT sarizansabari theimpactofconjugatedwpilactoseonthephysicochemicalandfunctionalpropertiesandinvitroinfantdigestion
AT sarizansabari impactofconjugatedwpilactoseonthephysicochemicalandfunctionalpropertiesandinvitroinfantdigestion