Design of nonlinear adaptive interaction algorithm controller for improvement of tracking performance of X-Y table ball screw drive system

Recently, the main interest in machine tools are to obtain precise positioning, robust tracking, low-cost manufacturing as well as adaptivity towards disturbances. These recent requirements or paradigm shift have led to a new and challenging era in the area of machining tools and control. However,...

पूर्ण विवरण

ग्रंथसूची विवरण
मुख्य लेखक: Retas, Zain
स्वरूप: थीसिस
भाषा:अंग्रेज़ी
अंग्रेज़ी
प्रकाशित: 2023
विषय:
ऑनलाइन पहुंच:http://eprints.utem.edu.my/id/eprint/27730/1/Design%20of%20nonlinear%20adaptive%20interaction%20algorithm%20controller%20for%20improvement%20of%20tracking%20performance%20of%20x-y%20table%20ball%20screw%20drive%20system.pdf
http://eprints.utem.edu.my/id/eprint/27730/2/Design%20of%20nonlinear%20adaptive%20interaction%20algorithm%20controller%20for%20improvement%20of%20tracking%20performance%20of%20x-y%20table%20ball%20screw%20drive%20system.pdf
_version_ 1846509898865573888
author Retas, Zain
author_facet Retas, Zain
author_sort Retas, Zain
description Recently, the main interest in machine tools are to obtain precise positioning, robust tracking, low-cost manufacturing as well as adaptivity towards disturbances. These recent requirements or paradigm shift have led to a new and challenging era in the area of machining tools and control. However, the presence of disturbances during machining processes in the form of cutting forces and friction forces have greatly reduced positioning and tracking accuracy of the system. Basically, there are three main objectives in this thesis. Firstly, to identify the mathematical model of machine tool for XY table using system identification technique through frequency response function (FRF) of the system. Secondly is to design a new control strategy that will provide good tracking performance of the XY table. The final objective is to validate the proposed technique through simulation using MATLAB/Simulink software and experimental work using real plant of Googoltech XY table. The methodology of this research is conducted based on the set objectives. This thesis proposes one new approach and contribution to compensate cutting force disturbances. The contribution is Nonlinear Adaptive Interaction Algorithm (NAIA). The controller is developed based on the enhancement and modification of the basic Adaptive Interaction Algorithm Controller (AIA). The NAIA controller is designed by integrating a modified nonlinear function to the base AIA controller. This thesis has successfully demonstrated that the tracking performance of a machine tool was increased significantly through the newly proposed technique that was compared with the basic PID controller. Results showed that the newly proposed NAIA control strategy managed to provide up to 60.2% improvement in comparison with PID (frequency, f = 0.6 Hz) and 53.55% improvement in comparison with CasPAi (at f = 0.2 Hz). In addition, results showed that the NAIA provides an improvement of 86.29% in terms of Root Mean Square Error (RMSE) for f = 0.6 Hz in comparison with PID and 78.68% improvement in comparison with CasPAi. However, further improvements are still needed. It is recommended for future work; the compensation of friction forces should be considered so that it enables further reduction of the tracking error especially in the segment of quadrant glitch.
format Thesis
id oai:eprints.utem.edu.my:27730
institution Universiti Teknikal Malaysia Melaka
language English
English
publishDate 2023
record_format eprints
spelling oai:eprints.utem.edu.my:277302024-11-12T10:18:11Z http://eprints.utem.edu.my/id/eprint/27730/ Design of nonlinear adaptive interaction algorithm controller for improvement of tracking performance of X-Y table ball screw drive system Retas, Zain T Technology (General) TJ Mechanical engineering and machinery Recently, the main interest in machine tools are to obtain precise positioning, robust tracking, low-cost manufacturing as well as adaptivity towards disturbances. These recent requirements or paradigm shift have led to a new and challenging era in the area of machining tools and control. However, the presence of disturbances during machining processes in the form of cutting forces and friction forces have greatly reduced positioning and tracking accuracy of the system. Basically, there are three main objectives in this thesis. Firstly, to identify the mathematical model of machine tool for XY table using system identification technique through frequency response function (FRF) of the system. Secondly is to design a new control strategy that will provide good tracking performance of the XY table. The final objective is to validate the proposed technique through simulation using MATLAB/Simulink software and experimental work using real plant of Googoltech XY table. The methodology of this research is conducted based on the set objectives. This thesis proposes one new approach and contribution to compensate cutting force disturbances. The contribution is Nonlinear Adaptive Interaction Algorithm (NAIA). The controller is developed based on the enhancement and modification of the basic Adaptive Interaction Algorithm Controller (AIA). The NAIA controller is designed by integrating a modified nonlinear function to the base AIA controller. This thesis has successfully demonstrated that the tracking performance of a machine tool was increased significantly through the newly proposed technique that was compared with the basic PID controller. Results showed that the newly proposed NAIA control strategy managed to provide up to 60.2% improvement in comparison with PID (frequency, f = 0.6 Hz) and 53.55% improvement in comparison with CasPAi (at f = 0.2 Hz). In addition, results showed that the NAIA provides an improvement of 86.29% in terms of Root Mean Square Error (RMSE) for f = 0.6 Hz in comparison with PID and 78.68% improvement in comparison with CasPAi. However, further improvements are still needed. It is recommended for future work; the compensation of friction forces should be considered so that it enables further reduction of the tracking error especially in the segment of quadrant glitch. 2023 Thesis NonPeerReviewed text en http://eprints.utem.edu.my/id/eprint/27730/1/Design%20of%20nonlinear%20adaptive%20interaction%20algorithm%20controller%20for%20improvement%20of%20tracking%20performance%20of%20x-y%20table%20ball%20screw%20drive%20system.pdf text en http://eprints.utem.edu.my/id/eprint/27730/2/Design%20of%20nonlinear%20adaptive%20interaction%20algorithm%20controller%20for%20improvement%20of%20tracking%20performance%20of%20x-y%20table%20ball%20screw%20drive%20system.pdf Retas, Zain (2023) Design of nonlinear adaptive interaction algorithm controller for improvement of tracking performance of X-Y table ball screw drive system. Masters thesis, Universiti Teknikal Malaysia Melaka. https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=123732
spellingShingle T Technology (General)
TJ Mechanical engineering and machinery
Retas, Zain
Design of nonlinear adaptive interaction algorithm controller for improvement of tracking performance of X-Y table ball screw drive system
title Design of nonlinear adaptive interaction algorithm controller for improvement of tracking performance of X-Y table ball screw drive system
title_full Design of nonlinear adaptive interaction algorithm controller for improvement of tracking performance of X-Y table ball screw drive system
title_fullStr Design of nonlinear adaptive interaction algorithm controller for improvement of tracking performance of X-Y table ball screw drive system
title_full_unstemmed Design of nonlinear adaptive interaction algorithm controller for improvement of tracking performance of X-Y table ball screw drive system
title_short Design of nonlinear adaptive interaction algorithm controller for improvement of tracking performance of X-Y table ball screw drive system
title_sort design of nonlinear adaptive interaction algorithm controller for improvement of tracking performance of x y table ball screw drive system
topic T Technology (General)
TJ Mechanical engineering and machinery
url http://eprints.utem.edu.my/id/eprint/27730/1/Design%20of%20nonlinear%20adaptive%20interaction%20algorithm%20controller%20for%20improvement%20of%20tracking%20performance%20of%20x-y%20table%20ball%20screw%20drive%20system.pdf
http://eprints.utem.edu.my/id/eprint/27730/2/Design%20of%20nonlinear%20adaptive%20interaction%20algorithm%20controller%20for%20improvement%20of%20tracking%20performance%20of%20x-y%20table%20ball%20screw%20drive%20system.pdf
url-record http://eprints.utem.edu.my/id/eprint/27730/
https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=123732
work_keys_str_mv AT retaszain designofnonlinearadaptiveinteractionalgorithmcontrollerforimprovementoftrackingperformanceofxytableballscrewdrivesystem