Hybrid weight deep belief network algorithm for anomaly-based intrusion detection system
With an increasing number of recent services connected to the Internet, including cloud computing and Internet of Things systems, cyber-attacks have become more challenging. The deep learning approach plays a pertinent role in tracing new attacks in cybersecurity. Recently, researchers suggested a d...
| Auteur principal: | |
|---|---|
| Format: | Thèse |
| Langue: | anglais anglais |
| Publié: |
2022
|
| Sujets: | |
| Accès en ligne: | http://eprints.utem.edu.my/id/eprint/28241/1/Hybrid%20weight%20deep%20belief%20network%20algorithm%20for%20anomaly-based%20intrusion%20detection%20system.pdf http://eprints.utem.edu.my/id/eprint/28241/2/Hybrid%20weight%20deep%20belief%20network%20algorithm%20for%20anomaly-based%20intrusion%20detection%20system.pdf |
Internet
http://eprints.utem.edu.my/id/eprint/28241/1/Hybrid%20weight%20deep%20belief%20network%20algorithm%20for%20anomaly-based%20intrusion%20detection%20system.pdfhttp://eprints.utem.edu.my/id/eprint/28241/2/Hybrid%20weight%20deep%20belief%20network%20algorithm%20for%20anomaly-based%20intrusion%20detection%20system.pdf