Interacted Multiple Ant Colonies for Search Stagnation Problem

Ant Colony Optimization (ACO) is a successful application of swarm intelligence. ACO algorithms generate a good solution at the early stages of the algorithm execution but unfortunately let all ants speedily converge to an unimproved solution. This thesis addresses the issues associated with search...

詳細記述

書誌詳細
第一著者: Aljanabi, Alaa Ismael
フォーマット: 学位論文
言語:英語
英語
出版事項: 2010
主題:
オンライン・アクセス:https://etd.uum.edu.my/2111/1/Alaa_Ismael_Aljanabi.pdf
https://etd.uum.edu.my/2111/2/1.Alaa_Ismael_Aljanabi.pdf
_version_ 1846512095334498304
author Aljanabi, Alaa Ismael
author_facet Aljanabi, Alaa Ismael
author_sort Aljanabi, Alaa Ismael
description Ant Colony Optimization (ACO) is a successful application of swarm intelligence. ACO algorithms generate a good solution at the early stages of the algorithm execution but unfortunately let all ants speedily converge to an unimproved solution. This thesis addresses the issues associated with search stagnation problem that ACO algorithms suffer from. In particular, it proposes the use of multiple interacted ant colonies as a new algorithmic framework. The proposed framework is incorporated with necessary mechanisms that coordinate the work of these colonies to avoid stagnation situations and therefore achieve a better performance compared to one colony ant algorithm. The proposed algorithmic framework has been experimentally tested on two different NP-hard combinatorial optimization problems, namely the travelling salesman problem and the single machine total weighted tardiness problem. The experimental results show the superiority of the proposed approach than existing one colony ant algorithms like the ant colony system and max-min ant system. An analysis study of the stagnation behaviour shows that the proposed algorithmic framework suffers less from stagnation than other ACO algorithmic frameworks.
format Thesis
id oai:etd.uum.edu.my:2111
institution Universiti Utara Malaysia
language English
English
publishDate 2010
record_format eprints
spelling oai:etd.uum.edu.my:21112022-04-10T06:13:53Z https://etd.uum.edu.my/2111/ Interacted Multiple Ant Colonies for Search Stagnation Problem Aljanabi, Alaa Ismael QA299.6-433 Analysis Ant Colony Optimization (ACO) is a successful application of swarm intelligence. ACO algorithms generate a good solution at the early stages of the algorithm execution but unfortunately let all ants speedily converge to an unimproved solution. This thesis addresses the issues associated with search stagnation problem that ACO algorithms suffer from. In particular, it proposes the use of multiple interacted ant colonies as a new algorithmic framework. The proposed framework is incorporated with necessary mechanisms that coordinate the work of these colonies to avoid stagnation situations and therefore achieve a better performance compared to one colony ant algorithm. The proposed algorithmic framework has been experimentally tested on two different NP-hard combinatorial optimization problems, namely the travelling salesman problem and the single machine total weighted tardiness problem. The experimental results show the superiority of the proposed approach than existing one colony ant algorithms like the ant colony system and max-min ant system. An analysis study of the stagnation behaviour shows that the proposed algorithmic framework suffers less from stagnation than other ACO algorithmic frameworks. 2010-01 Thesis NonPeerReviewed text en https://etd.uum.edu.my/2111/1/Alaa_Ismael_Aljanabi.pdf text en https://etd.uum.edu.my/2111/2/1.Alaa_Ismael_Aljanabi.pdf Aljanabi, Alaa Ismael (2010) Interacted Multiple Ant Colonies for Search Stagnation Problem. PhD. thesis, Universiti Utara Malaysia.
spellingShingle QA299.6-433 Analysis
Aljanabi, Alaa Ismael
Interacted Multiple Ant Colonies for Search Stagnation Problem
title Interacted Multiple Ant Colonies for Search Stagnation Problem
title_full Interacted Multiple Ant Colonies for Search Stagnation Problem
title_fullStr Interacted Multiple Ant Colonies for Search Stagnation Problem
title_full_unstemmed Interacted Multiple Ant Colonies for Search Stagnation Problem
title_short Interacted Multiple Ant Colonies for Search Stagnation Problem
title_sort interacted multiple ant colonies for search stagnation problem
topic QA299.6-433 Analysis
url https://etd.uum.edu.my/2111/1/Alaa_Ismael_Aljanabi.pdf
https://etd.uum.edu.my/2111/2/1.Alaa_Ismael_Aljanabi.pdf
url-record https://etd.uum.edu.my/2111/
work_keys_str_mv AT aljanabialaaismael interactedmultipleantcoloniesforsearchstagnationproblem