Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach

Robust linear discriminant analysis (RLDA) methods are becoming the better choice for classification problems as compared to the classical linear discriminant analysis (LDA) due to their ability in circumventing outliers issue. Classical LDA relies on the usual location and scale estimators which ar...

詳細記述

書誌詳細
第一著者: Melik, Hameedah Naeem
フォーマット: 学位論文
言語:英語
英語
出版事項: 2017
主題:
オンライン・アクセス:https://etd.uum.edu.my/6810/1/s819154_01.pdf
https://etd.uum.edu.my/6810/2/s819154_02.pdf
_version_ 1846512834539683840
author Melik, Hameedah Naeem
author_facet Melik, Hameedah Naeem
author_sort Melik, Hameedah Naeem
description Robust linear discriminant analysis (RLDA) methods are becoming the better choice for classification problems as compared to the classical linear discriminant analysis (LDA) due to their ability in circumventing outliers issue. Classical LDA relies on the usual location and scale estimators which are the sample mean and covariance matrix. The sensitivity of these estimators towards outliers will jeopardize the classification process. To alleviate the issue, robust estimators of location and covariance are proposed. Thus, in this study, two RLDA for two groups classification were modified using two highly robust location estimators namely Modified One-Step M-estimator (MOM) and Winsorized Modified One-Step M-estimator (WMOM). Integrated with a highly robust scale estimator, Qn, in the trimming criteria of MOM and WMOM, two new RLDA were developed known as RLDAMQ and RLDAWMQ respectively. In the computation of the new RLDA, the usual mean is replaced by MOM-Qn and WMOM-Qn accordingly. The performance of the new RLDA were tested on simulated as well as real data and then compared against the classical LDA. For simulated data, several variables were manipulated to create various conditions that always occur in real life. The variables were homogeneity of covariance (equal and unequal), samples (balanced and unbalanced), dimension of variables, and the percentage of contamination. In general, the results show that the performance of the new RLDA are more favorable than the classical LDA in terms of average misclassification error for contaminated data, although the new RLDA have the shortcoming of requiring more computational time. RLDAMQ works best under balanced sample sizes while RLDAWMQ surpasses the others under unbalanced sample sizes. When real financial data were considered, RLDAMQ shows capability in handling outliers with lowest misclassification error. As a conclusion, this research has achieved its primary objective which is to develop new RLDA for two groups classification of multivariate data in the presence of outliers.
format Thesis
id oai:etd.uum.edu.my:6810
institution Universiti Utara Malaysia
language English
English
publishDate 2017
record_format eprints
spelling oai:etd.uum.edu.my:68102021-05-10T06:34:39Z https://etd.uum.edu.my/6810/ Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach Melik, Hameedah Naeem QA273-280 Probabilities. Mathematical statistics Robust linear discriminant analysis (RLDA) methods are becoming the better choice for classification problems as compared to the classical linear discriminant analysis (LDA) due to their ability in circumventing outliers issue. Classical LDA relies on the usual location and scale estimators which are the sample mean and covariance matrix. The sensitivity of these estimators towards outliers will jeopardize the classification process. To alleviate the issue, robust estimators of location and covariance are proposed. Thus, in this study, two RLDA for two groups classification were modified using two highly robust location estimators namely Modified One-Step M-estimator (MOM) and Winsorized Modified One-Step M-estimator (WMOM). Integrated with a highly robust scale estimator, Qn, in the trimming criteria of MOM and WMOM, two new RLDA were developed known as RLDAMQ and RLDAWMQ respectively. In the computation of the new RLDA, the usual mean is replaced by MOM-Qn and WMOM-Qn accordingly. The performance of the new RLDA were tested on simulated as well as real data and then compared against the classical LDA. For simulated data, several variables were manipulated to create various conditions that always occur in real life. The variables were homogeneity of covariance (equal and unequal), samples (balanced and unbalanced), dimension of variables, and the percentage of contamination. In general, the results show that the performance of the new RLDA are more favorable than the classical LDA in terms of average misclassification error for contaminated data, although the new RLDA have the shortcoming of requiring more computational time. RLDAMQ works best under balanced sample sizes while RLDAWMQ surpasses the others under unbalanced sample sizes. When real financial data were considered, RLDAMQ shows capability in handling outliers with lowest misclassification error. As a conclusion, this research has achieved its primary objective which is to develop new RLDA for two groups classification of multivariate data in the presence of outliers. 2017 Thesis NonPeerReviewed text en https://etd.uum.edu.my/6810/1/s819154_01.pdf text en https://etd.uum.edu.my/6810/2/s819154_02.pdf Melik, Hameedah Naeem (2017) Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach. Masters thesis, Universiti Utara Malaysia.
spellingShingle QA273-280 Probabilities. Mathematical statistics
Melik, Hameedah Naeem
Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach
title Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach
title_full Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach
title_fullStr Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach
title_full_unstemmed Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach
title_short Robust linear discriminant analysis using MOM-Qn and WMOM-Qn estimators: Coordinate-wise approach
title_sort robust linear discriminant analysis using mom qn and wmom qn estimators coordinate wise approach
topic QA273-280 Probabilities. Mathematical statistics
url https://etd.uum.edu.my/6810/1/s819154_01.pdf
https://etd.uum.edu.my/6810/2/s819154_02.pdf
url-record https://etd.uum.edu.my/6810/
work_keys_str_mv AT melikhameedahnaeem robustlineardiscriminantanalysisusingmomqnandwmomqnestimatorscoordinatewiseapproach