Hybridization of enhanced ant colony system and Tabu search algorithm for packet routing in wireless sensor network

In Wireless Sensor Network (WSN), high transmission time occurs when search agent focuses on the same sensor nodes, while local optima problem happens when agent gets trapped in a blind alley during searching. Swarm intelligence algorithms have been applied in solving these problems including the An...

Full description

Bibliographic Details
Main Author: Husna, Jamal Abdul Nasir
Format: Thesis
Language:English
English
English
Published: 2020
Subjects:
Online Access:https://etd.uum.edu.my/8785/1/Deposit%20Permission_s900065.pdf
https://etd.uum.edu.my/8785/2/s900065_01.pdf
https://etd.uum.edu.my/8785/3/s900065_references.docx
https://etd.uum.edu.my/8785/
Abstract Abstract here
_version_ 1855574796719357952
author Husna, Jamal Abdul Nasir
author_facet Husna, Jamal Abdul Nasir
author_sort Husna, Jamal Abdul Nasir
description In Wireless Sensor Network (WSN), high transmission time occurs when search agent focuses on the same sensor nodes, while local optima problem happens when agent gets trapped in a blind alley during searching. Swarm intelligence algorithms have been applied in solving these problems including the Ant Colony System (ACS) which is one of the ant colony optimization variants. However, ACS suffers from local optima and stagnation problems in medium and large sized environments due to an ineffective exploration mechanism. This research proposes a hybridization of Enhanced ACS and Tabu Search (EACS(TS)) algorithm for packet routing in WSN. The EACS(TS) selects sensor nodes with high pheromone values which are calculated based on the residual energy and current pheromone value of each sensor node. Local optima is prevented by marking the node that has no potential neighbour node as a Tabu node and storing it in the Tabu list. Local pheromone update is performed to encourage exploration to other potential sensor nodes while global pheromone update is applied to encourage the exploitation of optimal sensor nodes. Experiments were performed in a simulated WSN environment supported by a Routing Modelling Application Simulation Environment (RMASE) framework to evaluate the performance of EACS(TS). A total of 6 datasets were deployed to evaluate the effectiveness of the proposed algorithm. Results showed that EACS(TS) outperformed in terms of success rate, packet loss, latency, and energy efficiency when compared with single swarm intelligence routing algorithms which are Energy-Efficient Ant-Based Routing (EEABR), BeeSensor and Termite-hill. Better performances were also achieved for success rate, throughput, and latency when compared to other hybrid routing algorithms such as Fish Swarm Ant Colony Optimization (FSACO), Cuckoo Search-based Clustering Algorithm (ICSCA), and BeeSensor-C. The outcome of this research contributes an optimized routing algorithm for WSN. This will lead to a better quality of service and minimum energy utilization.
format Thesis
id oai:etd.uum.edu.my:8785
institution Universiti Utara Malaysia
language English
English
English
publishDate 2020
record_format EPrints
record_pdf Restricted
spelling oai:etd.uum.edu.my:87852021-11-01T06:52:48Z https://etd.uum.edu.my/8785/ Hybridization of enhanced ant colony system and Tabu search algorithm for packet routing in wireless sensor network Husna, Jamal Abdul Nasir T58.5-58.64 Information technology QA Mathematics In Wireless Sensor Network (WSN), high transmission time occurs when search agent focuses on the same sensor nodes, while local optima problem happens when agent gets trapped in a blind alley during searching. Swarm intelligence algorithms have been applied in solving these problems including the Ant Colony System (ACS) which is one of the ant colony optimization variants. However, ACS suffers from local optima and stagnation problems in medium and large sized environments due to an ineffective exploration mechanism. This research proposes a hybridization of Enhanced ACS and Tabu Search (EACS(TS)) algorithm for packet routing in WSN. The EACS(TS) selects sensor nodes with high pheromone values which are calculated based on the residual energy and current pheromone value of each sensor node. Local optima is prevented by marking the node that has no potential neighbour node as a Tabu node and storing it in the Tabu list. Local pheromone update is performed to encourage exploration to other potential sensor nodes while global pheromone update is applied to encourage the exploitation of optimal sensor nodes. Experiments were performed in a simulated WSN environment supported by a Routing Modelling Application Simulation Environment (RMASE) framework to evaluate the performance of EACS(TS). A total of 6 datasets were deployed to evaluate the effectiveness of the proposed algorithm. Results showed that EACS(TS) outperformed in terms of success rate, packet loss, latency, and energy efficiency when compared with single swarm intelligence routing algorithms which are Energy-Efficient Ant-Based Routing (EEABR), BeeSensor and Termite-hill. Better performances were also achieved for success rate, throughput, and latency when compared to other hybrid routing algorithms such as Fish Swarm Ant Colony Optimization (FSACO), Cuckoo Search-based Clustering Algorithm (ICSCA), and BeeSensor-C. The outcome of this research contributes an optimized routing algorithm for WSN. This will lead to a better quality of service and minimum energy utilization. 2020 Thesis NonPeerReviewed text en https://etd.uum.edu.my/8785/1/Deposit%20Permission_s900065.pdf text en https://etd.uum.edu.my/8785/2/s900065_01.pdf text en https://etd.uum.edu.my/8785/3/s900065_references.docx Husna, Jamal Abdul Nasir (2020) Hybridization of enhanced ant colony system and Tabu search algorithm for packet routing in wireless sensor network. Doctoral thesis, Universiti Utara Malaysia.
spellingShingle T58.5-58.64 Information technology
QA Mathematics
Husna, Jamal Abdul Nasir
Hybridization of enhanced ant colony system and Tabu search algorithm for packet routing in wireless sensor network
thesis_level PhD
title Hybridization of enhanced ant colony system and Tabu search algorithm for packet routing in wireless sensor network
title_full Hybridization of enhanced ant colony system and Tabu search algorithm for packet routing in wireless sensor network
title_fullStr Hybridization of enhanced ant colony system and Tabu search algorithm for packet routing in wireless sensor network
title_full_unstemmed Hybridization of enhanced ant colony system and Tabu search algorithm for packet routing in wireless sensor network
title_short Hybridization of enhanced ant colony system and Tabu search algorithm for packet routing in wireless sensor network
title_sort hybridization of enhanced ant colony system and tabu search algorithm for packet routing in wireless sensor network
topic T58.5-58.64 Information technology
QA Mathematics
url https://etd.uum.edu.my/8785/1/Deposit%20Permission_s900065.pdf
https://etd.uum.edu.my/8785/2/s900065_01.pdf
https://etd.uum.edu.my/8785/3/s900065_references.docx
https://etd.uum.edu.my/8785/
work_keys_str_mv AT husnajamalabdulnasir hybridizationofenhancedantcolonysystemandtabusearchalgorithmforpacketroutinginwirelesssensornetwork