EEG-based IQ and learning style classification model using artificial neural network / Muhammad Marwan Anoor

Intelligence and learning styles are among most widely studied traits in cognitive psychology. Currently, both aspects of cognition can only be assessed using paper-based psychometric tests. The methods, however, are exposed to inconsistency issues due to the variation of examination format and lang...

全面介绍

书目详细资料
主要作者: Muhammad Marwan , Anoor
格式: Thesis
出版: 2021
主题:
_version_ 1849735948559974400
author Muhammad Marwan , Anoor
author_facet Muhammad Marwan , Anoor
author_sort Muhammad Marwan , Anoor
description Intelligence and learning styles are among most widely studied traits in cognitive psychology. Currently, both aspects of cognition can only be assessed using paper-based psychometric tests. The methods, however, are exposed to inconsistency issues due to the variation of examination format and language barriers. Hence, this study proposes an intelligent system for assessing intelligence quotient (IQ) level and learning style from the resting brainwaves using artificial neural network (ANN). Eighty-five individuals from varying highest educational backgrounds have participated in this study. Resting electroencephalogram (EEG) is recorded from the left prefrontal cortex using NeuroSky. Control groups are established using Kolb’s Learning Style Inventory (LSI) and a model developed based on Raven’s Progressive Matrices (RPM). Subsequently, theta, alpha and beta power ratio is extracted from the pre-processed EEG. Distribution and pattern of features show a correlation with the Neural Efficiency Hypothesis of intelligence and Alpha Suppression Theory. The power ratio features are then used to train, validate and test the ANN model. The system has demonstrated satisfactory performance for IQ classification with accuracies of 98.3% for training and 94.7% for testing. The proposed model is also able to classify learning style with accuracies of 96.9% for training and 80.0% for testing.
format Thesis
id oai:studentsrepo.um.edu.my:14665
institution Universiti Malaya
publishDate 2021
record_format eprints
spelling oai:studentsrepo.um.edu.my:146652023-07-25T23:16:15Z EEG-based IQ and learning style classification model using artificial neural network / Muhammad Marwan Anoor Muhammad Marwan , Anoor T Technology (General) TK Electrical engineering. Electronics Nuclear engineering Intelligence and learning styles are among most widely studied traits in cognitive psychology. Currently, both aspects of cognition can only be assessed using paper-based psychometric tests. The methods, however, are exposed to inconsistency issues due to the variation of examination format and language barriers. Hence, this study proposes an intelligent system for assessing intelligence quotient (IQ) level and learning style from the resting brainwaves using artificial neural network (ANN). Eighty-five individuals from varying highest educational backgrounds have participated in this study. Resting electroencephalogram (EEG) is recorded from the left prefrontal cortex using NeuroSky. Control groups are established using Kolb’s Learning Style Inventory (LSI) and a model developed based on Raven’s Progressive Matrices (RPM). Subsequently, theta, alpha and beta power ratio is extracted from the pre-processed EEG. Distribution and pattern of features show a correlation with the Neural Efficiency Hypothesis of intelligence and Alpha Suppression Theory. The power ratio features are then used to train, validate and test the ANN model. The system has demonstrated satisfactory performance for IQ classification with accuracies of 98.3% for training and 94.7% for testing. The proposed model is also able to classify learning style with accuracies of 96.9% for training and 80.0% for testing. 2021-04 Thesis NonPeerReviewed application/pdf http://studentsrepo.um.edu.my/14665/1/Muhammad_Marwan.pdf application/pdf http://studentsrepo.um.edu.my/14665/2/Muhammad_Marwan.pdf Muhammad Marwan , Anoor (2021) EEG-based IQ and learning style classification model using artificial neural network / Muhammad Marwan Anoor. Masters thesis, Universiti Malaya. http://studentsrepo.um.edu.my/14665/
spellingShingle T Technology (General)
TK Electrical engineering. Electronics Nuclear engineering
Muhammad Marwan , Anoor
EEG-based IQ and learning style classification model using artificial neural network / Muhammad Marwan Anoor
title EEG-based IQ and learning style classification model using artificial neural network / Muhammad Marwan Anoor
title_full EEG-based IQ and learning style classification model using artificial neural network / Muhammad Marwan Anoor
title_fullStr EEG-based IQ and learning style classification model using artificial neural network / Muhammad Marwan Anoor
title_full_unstemmed EEG-based IQ and learning style classification model using artificial neural network / Muhammad Marwan Anoor
title_short EEG-based IQ and learning style classification model using artificial neural network / Muhammad Marwan Anoor
title_sort eeg based iq and learning style classification model using artificial neural network muhammad marwan anoor
topic T Technology (General)
TK Electrical engineering. Electronics Nuclear engineering
url-record http://studentsrepo.um.edu.my/14665/
work_keys_str_mv AT muhammadmarwananoor eegbasediqandlearningstyleclassificationmodelusingartificialneuralnetworkmuhammadmarwananoor