Design, simulate and performance analysis of GSM and Wi-Fi bands of RF energy harvesting circuits for low DC power applications
| मुख्य लेखक: | |
|---|---|
| स्वरूप: | थीसिस |
| भाषा: | अंग्रेज़ी |
| प्रकाशित: |
2023
|
| विषय: | |
| ऑनलाइन पहुंच: | https://ir.upsi.edu.my/detailsg.php?det=11826 |
| Abstract | Abstract here |
| _version_ | 1855626269755965440 |
|---|---|
| author | Mohd Saiful Syazwan Mohd Yusoff |
| author_facet | Mohd Saiful Syazwan Mohd Yusoff |
| author_sort | Mohd Saiful Syazwan Mohd Yusoff |
| description | |
| format | Thesis |
| id | upsi-11826 |
| institution | Universiti Pendidikan Sultan Idris |
| language | English |
| publishDate | 2023 |
| record_format | sWADAH |
| record_pdf | Restricted |
| spelling | upsi-118262025-01-09 Design, simulate and performance analysis of GSM and Wi-Fi bands of RF energy harvesting circuits for low DC power applications 2023 Mohd Saiful Syazwan Mohd Yusoff TJ Mechanical engineering and machinery <p>The purpose of this research was to design, simulate and optimize a 4-band radio</p><p>frequency energy harvesting (RFEH) network circuit using the Keysight Technologies</p><p>Advanced Design System (ADS) design and simulation software used for low power</p><p>applications. The RF bands used for this study were Global System for Mobile</p><p>Communication (GSM) (950MHz, 1850MHz, 2150MHz) and Wireless Fidelity (Wi-</p><p>Fi) (5000MHz). Smith chart was employed to design the impedance matching circuit</p><p>to match the source impedance (Zin) and the load impedance (Zload) to minimize the</p><p>signal reflection (return loss) and maximize the power transfer. The impedances were</p><p>matched at the desired radio frequency (RF) operating frequency. A single, two and</p><p>three-stage voltage multipliers were simulated to obtain the output impedance at 4-band</p><p>RF frequencies with the source impedance set to 50 ohms. Simulation results showed</p><p>that the three-stage voltage multiplier produced the best outcomes, thus, was used for</p><p>this research. The highest RF to DC power conversion efficiency at 0dBm RF input</p><p>power were 54.317%, 41.011%, 25.281%, and 23.658%. On the other hand, the</p><p>optimum DC output voltage found at 30dBm were 5.701V, 5.696V, 5.668V, and</p><p>5.674V. In conclusion, this research found that the RFEH system with a three-stage</p><p>voltage multiplier connected to the impedance matching circuit produced both the</p><p>optimal DC output voltage and power conversion efficiency. The findings of this</p><p>research imply that the three-stage voltage multiplier is suitable for harvesting DC</p><p>electrical energy from 4 different RF band waves for low-power applications, especially</p><p>for wireless sensor networks (WSNs).</p> 2023 thesis https://ir.upsi.edu.my/detailsg.php?det=11826 https://ir.upsi.edu.my/detailsg.php?det=11826 text eng N/A openAccess Masters Perpustakaan Tuanku Bainun Fakulti Sains dan Matematik <p>Acciona. (2020). Wind energy. Acciona: Business as unusual. https://www.acciona. com/renewable-energy/wind-energy/?adin=02021864894</p><p></p><p>Adam, I., Yasin, M. N. M., Malek, M. F. A., Rahim, H. A., Shakhirul, M. S., & Razalli, M. S. (2017). Feasibility study on RF energy harvesting in Malaysia. Advanced Science Letters, 23(6), 50345038. https://doi.org/10.1166/asl.2017.7304.</p><p></p><p>Akin-Ponnle, A.E., & Carvalho, N.B. (2021). Energy harvesting mechanisms in a smart cityA review. Smart Cities, 4(2), 476498. https://doi.org/10.3390/ smartcities4020025.</p><p></p><p>Ali, E. M., Yahaya, N. Z., Nallagownden, P., & Alqasem, B.H. (2018). Enhanced Dickson voltage multiplier rectenna by developing analytical model for radio frequency harvesting applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21657. https://doi.org/10.1002/mmce. 21657.</p><p></p><p>Ali-Abadi, H.A., & Gharakhili, F.G. (2019). Design of dual-band impedance matching circuit using t-shape shunt stub. Signal Processing and Renewable Energy, 3(2), 18. https://journals.iau.ir/article_664959.html.</p><p></p><p>Allaboutcircuits. (n.d.). What are zener diodes? | Diodes and rectifiers | Electronics textbook. allaboutcircuits.com. https://www.allaboutcircuits.com/textbook/semi conductors/chpt-3/zener-diodes/.</p><p></p><p>Allen, J. J., & Smits, A. J. (2001). Energy harvesting eel. Journal of Fluids and Structures, 15(3-4), 629640. https://doi.org/10.1006/jfls.2000.0355.</p><p></p><p>Al-Shetwi, A.Q. (2022). Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Science of the Total Environment, 822, 153645. https://doi.org/10.1016/j.scitotenv.2022. 153645.</p><p>Alternative Energy Tutorials. (2023). Wind speed - Is there enough wind where you live. Alternative Energy Tutorials. https://www.alternative-energy-tutorials.com/wind-energy/wind-speed.html.</p><p></p><p>Al-Zubaidi, A.S., Ariffin, A.A., & Al-Qadhi, A.K. (2018). Enhancing the Stability of the Improved-LEACH Routing Protocol for WSNs. Journal of ICT Research and Applications, 12(1), 113. https://doi.org/10.5614/itbj.ict.res.appl.2018.12.1.1.</p><p></p><p>Amineh, R. K. (2020). Applications of electromagnetic waves: Present and future. Electronics, 9(5), 808. https://doi.org/10.3390/electronics9050808.</p><p></p><p>Ang, J. H., Yusup, Y., Zaki, S. A., Salehabadi, A., Rahman, M. B. A., & Ahmad, M. I. (2020). A review on kinetic energy harvesting towards innovative technological advances from sustainable sources. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 66(1), 1241. https://www.akademiabaru.com/ submit/index.php/arfmts/article/view/2804.</p><p></p><p>Assogba, O., Mbodji, A. K., & Diallo, A.K. (2020, February 4-6). Efficiency in RF energy harvesting systems: A comprehensive review [Paper presentation]. 2020 IEEE International Conference on Natural and Engineering Sciences for Sahel's Sustainable Development - Impact of Big Data Application on Society and Environment (IBASE-BF), Ouagadougou, Burkina Faso. https://doi.org/10.1109/ibase-bf48578.2020.9069597.</p><p></p><p>Awati, R. (2023). What is the Seebeck effect? TechTarget Networking. https://tinyurl.com/4e4eye2r.</p><p></p><p>Awodumi, O. B., & Adewuyi, A. O. (2020). The role of non-renewable energy consumption in economic growth and carbon emission: Evidence from oil producing economies in Africa. Energy Strategy Reviews, 27, 100434. https://doi.org/10.1016/j.esr.2019.100434.</p><p></p><p>Bakhoum, E. G. (2012). High-sensitivity miniature smoke detector. IEEE Sensors Journal, 12(10), 30313035. https://doi.org/10.1109/jsen.2012.2208741.</p><p></p><p>Bakkali, A., Pelegri-Sebastia, J., Sogorb, T., Llario, V., & Bou-Escriva, A. (2016). A dual-band antenna for RF energy harvesting systems in wireless sensor networks. Journal of Sensors, 2016, 18. https://doi.org/10.1155/2016/5725836.</p><p>Baroudi, U. (2019, March 21-24). Management of RF energy harvesting: A survey [Paper presentation]. 16th International Multi-Conference on Systems, Signals & Devices (SSD), Istanbul, Turkey. https://doi.org/10.1109/ssd.2019.8893169.</p><p></p><p>Batra, A. K., & Alomari, A. (2017). Ambient energy sources: Mechanical, light, and thermal. In Power harvesting via smart materials, pp. 1-15. The Society of Photo-Optical Instrumentation Engineers. https://doi.org/10.1117/3.2268643.ch1.</p><p></p><p>Bensky, A. (2019). Antennas and transmission lines. In Short-range wireless communication, pp. 4383. Elsevier. https://doi.org/10.1016/b978-0-12-815405-2.00003-8.</p><p></p><p>Bhattacharya, A. (n.d.). Power management of battery-powered wireless IoT Sensors. Blog.semtech.com. https://blog.semtech.com/low-dropout-for-battery-powered-wireless-iot-sensors#:~:text=Because%20of%20this%2C%20it%20has</p><p></p><p>Bougas, I. D., Papadopoulou, M. S., Boursianis, A. D., Kokkinidis, K., & Goudos, S. K. (2021). State-of-the-art techniques in RF energy harvesting circuits. Telecom, 2(4), 369389. https://doi.org/10.3390/telecom2040022</p><p></p><p>Bowick, C., Blyler, J., & Ajluni, C. J. (2008). RF circuit design (2nd ed.). Elsevier.</p><p></p><p>Branz, Ltd. (2022). Wind turbine systems and renewable energy. level.org.nz. https://www.level.org.nz/energy/renewable-electricity-generation/wind-turbine-systems/.</p><p></p><p>Bush. J. (2017, February 22). Understanding noise figure in RF systems. Keysight Technologies. https://www.electronicspecifier.com/products/test-and-measureme nt/understanding-noise-figure-in-rf-systems.</p><p></p><p>Cansiz, M., Altinel, D., & Kurt, G.K. (2019). Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 174, 292309. https://doi.org/10.1016/j.energy.2019.02.100.</p><p></p><p>Cauhan, V. (2015). Microwave and radar engineering with lab manual (1st ed.). Laxmi Publications Pvt Ltd.</p><p>Chen, S-W., Chang, M-H., Hsieh, W-C., & Hwang, W. (2010, May 30-June 2). Fully on-chip temperature, process, and voltage sensors [Paper presentation]. IEEE International Symposium on Circuits and Systems, Paris, France. https://doi.org/10.1109/iscas.2010.5537410.</p><p></p><p>Chew, Z. J., Ruan, T., & Zhu, M. (2018). Power management circuit for wireless sensor nodes powered by energy harvesting: On the synergy of harvester and load. IEEE Transactions on Power Electronics, 34(9), 86718681. https://doi.org/10.1109/ tpel.2018.2885827.</p><p></p><p>Davis, W.A. (2011). Radio frequency circuit design. John Wiley & Sons.</p><p></p><p>Dawood, M.S., Benazer S.S., Nanthini, N., Devika, R., & Karthick, R. (2021). Design of rectenna for wireless sensor networks. Materials Today: Proceedings, 45, 29122915. https://doi.org/10.1016/j.matpr.2020.11.905.</p><p></p><p>de Fazio, R., Cafagna, D., Marcuccio, G., Minerba, A., & Visconti, P. (2020). A multi-source harvesting system applied to sensor-based smart garments for monitoring workers bio-physical parameters in harsh environments. Energies, 13(9), 2161. https://doi.org/10.3390/en13092161.</p><p></p><p>Delgado-Alvarado, E., Elvira-Hernndez, E.A., Hernndez-Hernndez, J., Huerta-Chua, J., Vzquez-Leal, H., Martnez-Castillo, J., Garca-Ramrez, P. J., & Herrera-May, A. L. (2022). Recent progress of nanogenerators for green energy harvesting: Performance, applications, and challenges. Nanomaterials, 12(15), 2549. https://doi.org/10.3390/nano12152549.</p><p></p><p>Dinesh Kumar, S., & Veerami R. (2016). Harvesting microwave signal power from the ambient environment, International Journal of Communication and Computer Technologies, 4(2), 76-81. https://doi.org/10.31838/ijccts/04.02.04.</p><p></p><p>Divakaran, S. K., Krishna, D. D., & Nasimuddin. (2018). RF energy harvesting systems: An overview and design issues. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21633. https://doi.org/10.1002/mmce.216 33.</p><p></p><p>Dobrowolski, J. Scattering parameters in RF and microwave circuit analysis and design. Artech. https://ieeexplore.ieee.org/document/9101144.</p><p>Electrical4U. (2020, July 20). Admittance: What is it? (formula & admittance vs impedance). Electrical4U. https://www.electrical4u.com/admittance/</p><p></p><p>Electronic notes. (2016). Understanding reflection coefficient in RF systems. electronics-Notes.com. https://www.electronics-notes.com/articles/antennas-propagation/vswr-return-loss/reflection-coefficient.php#:~:text=Reflection%20 coefficient%20definition%3A&text=The%20reflection%20coefficient%20is%20equal.</p><p></p><p>Electronicforu. (2017, November 5). Harvesting radio frequency energy. Power Electronics. https://www.electronicsforu.com/market-verticals/power-electronics /harvesting-radio-frequency-energy.</p><p></p><p>Elliott, B. (2021). Optical Communication. AIP Publishing LLC. https://doi.org/ 10.1063/9780735423077.</p><p></p><p>Elsheakh, D. (2017). Microwave antennas for energy harvesting applications. In Goudos, S.K. (Ed.), Microwave systems and applications. https://doi.org/10.5772/64918.</p><p></p><p>Emilio, M. D. P. (2019, April 23). Circuits for RF energy harvesting. Planet Analog. https://www.planetanalog.com/circuits-for-rf-energy-harvesting/.</p><p></p><p>Eniscuola. (n.d.). Solar knowledge. Eniscuola. https://eniscuola.eni.com/en-IT/energy/ solar/solar-energy-knowledge.html.</p><p></p><p>Fahad, E. (2021, June 13). How to make wireless power transfer system for phones, dc motors, and LEDs. Electronic Clinic. https://www.electroniclinic.com/how-to-make-wireless-power-transfer-system-for-phones-dc-motors-and-leds/.</p><p></p><p>Frenzel, L. (2011, October 25). Back to basics: Impedance matching (Part 1). electronicdesign.com. https://www.electronicdesign.com/technologies/communi cations/article/21796367/back-to-basics-impedance-matching-part-1.</p><p></p><p>Fritzsche, H. (2019). Electromagnetic radiation - Radio waves. Encyclopdia Britannica. https://www.britannica.com/science/electromagnetic-radiation/Radio -waves.</p><p>Gholikhani, M., Tahami, S. A., Khalili, M., & Dessouky, S. (2019). Electromagnetic energy harvesting technology: Key to sustainability in transportation systems. Sustainability, 11(18), 4906. https://doi.org/10.3390/su11184906.</p><p></p><p>Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24(24), 3850. https://doi.org/10.1016/j.esr.2019.01.006.</p><p></p><p>Grady, S. (2011). Zero power wireless sensors using energy processing. Energy Harvesting Technologies. https://tinyurl.com/4mtv8nrs.</p><p></p><p>Grossi, M. (2021). Energy harvesting strategies for wireless sensor networks and mobile devices: A review. Electronics, 10(6), 661. https://doi.org/10.3390/ electronics10060661.</p><p></p><p>Gney, T. (2019). Renewable energy, non-renewable energy and sustainable development. International Journal of Sustainable Development & World Ecology, 26(5), 389397. https://doi.org/10.1080/13504509.2019.1595214.</p><p></p><p>Gupta, S.K., Jangam, H.K., Sharma, N. (2018). Theory of antennas, its advantage & applications in communication systems. International Journal of Engineering Development and Research, 6(1), 925-930.</p><p></p><p>Gurgel, K-W. (2015, November 25). University of Hamburg HF-radar home page. University of Hamburg. http://wera.cen.uni-hamburg.de/DBM.shtml.</p><p></p><p>Garade, M. (2018). What are S-parameters? (2018). Everythingrf.com. https://www.everythingrf.com/community/what-are-s-parameters.</p><p></p><p>Hameed, Z., & Moez, K. (2017). Design of impedance matching circuits for RF energy harvesting systems. Microelectronics Journal, 62, 4956. https://doi.org/10.1016/ j.mejo.2017.02.004.</p><p></p><p>Hamza, M., Ur Rehman, M., Riaz, A., Maqsood, Z., & Tanveer Khan, W. (2021, January 17-22). Hybrid dual band radio frequency and solar energy harvesting system for making battery-less sensing nodes [Paper presentation]. IEEE Radio and Wireless Symposium (RWS). https://doi.org/10.1109/rws50353.2021.9360 396.</p><p>Keysight Technologies. (2019). Fundamentals of RF and microwave noise figure measurements. https://www.datatec.eu/en/keysight-5952-8255en.</p><p></p><p>Khalid, F., Saeed, W., Shoaib, N., Khan, M.U., & Cheema, H.M. (2020). Quad-band 3D rectenna array for ambient rf energy harvesting. International Journal of Antennas and Propagation, 2020, e7169846. https://doi.org/10.1155/2020/7169 846.</p><p></p><p>Khaligh, A., & Onar, O.C. (2017). Energy Harvesting: Solar, wind, and ocean energy conversion systems. CRC Press. https://doi.org/10.1201/9781439815090.</p><p></p><p>Khan, I., Han, L., Khan, H., & Kim Oanh, L.T. (2021). Analyzing renewable and nonrenewable energy sources for environmental quality: Dynamic investigation in developing countries. Mathematical Problems in Engineering, 2021, e3399049. https://doi.org/10.1155/2021/3399049.</p><p></p><p>Khan, S.R., Pavuluri, S.K., Cummins, G., & Desmulliez, M.P.Y. (2020). Wireless power transfer techniques for implantable medical devices: A review. Sensors, 20(12), 3487. https://doi.org/10.3390/s20123487.</p><p></p><p>Khare, V., Khare, C., Nema, S., & Baredar, P. (2019). Introduction to energy sources. In Tidal energy systems: Design, optimization and control, pp. 139. Elsevier. https://doi.org/10.1016/b978-0-12-814881-5.00001-6</p><p></p><p>Krein, P. T. (2011). Introduction: Energy sources, storage and transmission. In Rashid, M.H. (Ed.), Power electronics handbook (3rd ed.), pp. 114. Elsevier. https://doi.org/10.1016/b978-0-12-382036-5.00001-x.</p><p></p><p>Kundu(datta), P., Acharjee, J., & Mandal, K. (2017). Design of an efficient rectifier circuit for RF energy harvesting system. International Journal of Advanced Engineering and Management, 2(4), 94-97. https://hal.science/hal-01592486.</p><p></p><p>Li, C., & Schreurs, D. (2017). Fundamentals of microwave engineering. In: Li, C., Tofighi, M-H., Schreurs, D., & Horng, T-S, J. (Eds.), Principles and applications of RF/microwave in healthcare and biosensing, pp.1-52. Academic Press. https://doi.org/10.1016/b978-0-12-802903-9.00001-1.</p><p></p><p>Ibrahim, H. H., Singh, M. S. J., Al-Bawri, S. S., & Islam, M. T. (2020). Synthesis, characterization and development of energy harvesting techniques incorporated with antennas: A review study. Sensors, 20(10), 2772. https://doi.org/10.3390/s20102772.</p><p></p><p>Ibrahim, H.H., Singh, M.J., Al-Bawri, S.S., Ibrahim, S. K., Islam, M. T., Alzamil, A., & Islam, M.S. (2022). Radio frequency energy harvesting technologies: A comprehensive review on designing, methodologies, and potential applications. Sensors, 22(11), 4144. https://doi.org/10.3390/s22114144.</p><p>Haque, M.E., & Baroudi, U. (2020). Ambient self-powered cluster-based wireless sensor networks for industry 4.0 applications. Soft Computing, 25(3), 18591884. https://doi.org/10.1007/s00500-020-05259-y.</p><p></p><p>Huang, J., Zhou, Y., Ning, Z., & Gharavi, H. (2019). Wireless power transfer and energy harvesting: Current status and future prospects. IEEE Wireless Communications, 26(4), 163169. https://doi.org/10.1109/mwc.2019.1800378.</p><p></p><p>Hydro-Qubec. (2021). Wind turbines | How they work? Hydro-Qubec. http://www.hydroquebec.com/learning/eolienne.</p><p></p><p>Hymel, R.W. (2016, June). Far-field wireless energy harvesting for increased safeguards equipment battery life. Sandia National Laboratories. https://www.osti. gov/servlets/purl/1431252.</p><p></p><p></p><p></p><p>Jawad, A.M., Nordin, R., Gharghan, S.K., Jawad, H.M., & Ismail, M. (2017). Opportunities and challenges for near-field wireless power transfer: A review. Energies, 10(7), 1022. https://doi.org/10.3390/en10071022.</p><p></p><p>Jin, T., Song, Y., Cui G., & Guo, S. (2020). Advances on penetrating imaging of building layout technique using low frequency radio waves. Journal of Radars, 10(3), 342-359. https://doi.org/10.12000/jr20119.</p><p></p><p>Jo, J., Jo, B., Kim, J., Kim, S., & Han, W. (2020). Development of an IoT-based indoor air quality monitoring platform. Journal of Sensors, 2020, 114. https://doi.org/10.1155/2020/8749764.</p><p></p><p>Kato, Y., Koyama, M., Fukushima, Y., & Nakagaki, T. (2016). Energy technology roadmaps of Japan: Future energy systems based on feasible technologies beyond 2030. Springer Japan. https://doi.org/10.1007/978-4-431-55951-1.</p><p>Kaur, N., Sharma, N., & Kumar, N. (2018). RF energy harvesting and storage system of rectenna: A review. Indian Journal of Science and Technology, 11(25), 15. https://doi.org/10.17485/ijst/2018/v11i25/114309.</p><p></p><p>Liu, Y., Khanbareh, H., Halim, M. A., Feeney, A., Zhang, X., Heidari, H., & Ghannam, R. (2021). Piezoelectric energy harvesting for self-powered wearable upper limb applications. Nano Select, 2(8), 1459-1479. https://doi.org/10.1002/nano.202000 242.</p><p></p><p>Lozano, M.G., Garca, Y.P., Gonzalez, J.A.S., Bauelos, C.V. O., Escareo, M.P.L., & Balagurusamy, N. (2019). Biosensors for food quality and safety monitoring: Fundamentals and applications. In Kuddus, M. (Ed.), Enzymes in Food Biotechnology, pp. 691709. https://doi.org/10.1016/b978-0-12-813280-7.0004 0-2.</p><p></p><p>Lu, M., Fu, G., Osman, N. B., & Konbr, U. (2021). Green energy harvesting strategies on edge-based urban computing in sustainable internet of things. Sustainable Cities and Society, 75, 103349. https://doi.org/10.1016/j.scs.2021.103349.</p><p></p><p>Luo, Y., Pu, L., Wang, G., & Zhao, Y. (2019). RF energy harvesting wireless communications: RF environment, device hardware and practical issues. Sensors, 19(13), 3010. https://doi.org/10.3390/s19133010</p><p></p><p>Mahan, G. D. (2005). Thermoelectric effect. In: Bassani, F., Liedl, G.L., & Wyder, P. (Eds.), Encyclopedia of condensed matter physics, pp. 180187. Elsevier. https://doi.org/10.1016/b0-12-369401-9/00726-9.</p><p></p><p>Mahmood, A. I., Gharghan, S. K., Eldosoky, M. A., & Soliman, A. M. (2022). Near-field wireless power transfer used in biomedical implants: A comprehensive review. IET Power Electronics, 15(16), 1936-1955. https://doi.org/10.1049/pel2. 12351.</p><p></p><p>Malaysian Communications and Multimedia Commission, MCMC. (2023). Spectrum assignments for 900 MHz band. https://www.mcmc.gov.my/en/legal/registers /cma-registers/register-of-spectrum-assignments/spectrum-assignments-for-900 mhz-band.</p><p></p><p>Malik, N. N., Alosaimi, W., Uddin, M. I., Alouffi, B., & Alyami, H. (2020). Wireless sensor network applications in healthcare and precision agriculture. Journal of Healthcare Engineering, 2020, 19. https://doi.org/10.1155/2020/8836613.</p><p></p><p>Martins, G.C., Mansano, A.L., Stoopman, M., & Serdjin, W.A. (2021). Introduction to RF energy harvesting. In: Sazonov, E. (Ed), Wearable sensors: Fundamental, implementation and applications (2nd ed.), pp. 331-366. Elsevier. https://doi.org/10.1016/B978-0-12-819246-7.00011-5.</p><p>Martins, G.C., Urso, A., Mansano, A., Liu, Y., & Serdijn, W.A. (2018). Energy-efficient low-power circuit techniques for wireless energy and data transfer in IoT sensor nodes. arXiv Preprint. https://doi.org/10.48550/arXiv.1704.08910.</p><p></p><p>Maxim Integrated. (2020). Glossary definition for energy harvesting. Analog devices. https://www.stg-maximintegrated.com/en/glossary/definitions.mvp/term/Energ y%20Harvesting/gpk/1144.</p><p></p><p>Microwaves101. (2023). Why fifty ohms? Microwaves 101.com. https://www. microwaves101.com/encyclopedias/why-fifty-ohms.</p><p></p><p>Moghaddam, A.K., Chuah, J.H., Ramiah, H., Ahmadian, J., Mak, P-I., & Martins, R. P. (2017). A 73.9%-efficiency CMOS rectifier using a lower DC feeding (LDCF) self-body-biasing technique for far-field RF energy-harvesting systems. IEEE Transactions on Circuits and Systems I-Regular Papers, 64(4), 9921002. https://doi.org/10.1109/tcsi.2016.2623821.</p><p></p><p>Mouapi, A., Hakem, N., & Delisle, G. Y. (2018). A new approach to design of RF energy harvesting system to enslave wireless sensor networks. ICT Express, 4(4), 228233. https://doi.org/10.1016/j.icte.2017.11.002.</p><p></p><p>Mudeng, V., Priyanto, Y.T.K., Wicaksono, H., Kusuma, V.A., & Muntaha, M. (2019, November 18-21). Design of five stages Cockroft-Walton with passive filter [Paper presentation]. 6th International Conference on Electric Vehicular Technology (ICEVT), Bali, Indonesia. https://doi.org/10.1109/icevt48285.20 19.8993983.</p><p></p><p>Muhammad, S., Tiang, J. J., Wong, S. K., Rambe, A. H., Adam, I., Smida, A., Waly, M. I., Iqbal, A., Abubakar, A. S., & Yasin, M.N.M. (2022). Harvesting systems for RF energy: Trends, challenges, techniques, and tradeoffs. Electronics, 11(6), 959. https://doi.org/10.3390/electronics11060959.</p><p></p><p>Muncuk, U., Alemdar, K., Sarode, J. D., & Chowdhury, K.R. (2018). Multiband Ambient RF energy harvesting circuit design for enabling batteryless sensors and IoT. IEEE Internet of Things Journal, 5(4), 27002714. https://doi.org/10.1109/ jiot.2018.2813162.</p><p></p><p>Nawaza, S.M.N., & Alvib, S. (2018). Energy security for socio-economic and environmental sustainability in Pakistan. Heliyon, 4(10), e00854. https://doi. org/10.1016%2Fj.heliyon.2018.e00854.</p><p></p><p>Newaskar, D., Kulkarni, K., & Paliwal, M. (2021). Wireless charger for biomedical devices. IT in Industry, 9(3), 689-695. http://it-in-industry.org/index.php/itii/ article/view/650/557.</p><p></p><p>Nguyen, D.H., & Chapman, A. (2021). The potential contributions of universal and ubiquitous wireless power transfer systems towards sustainability. International Journal of Sustainable Engineering, 14(6), 17801790. https://doi.org/10.1080/ 19397038.2021.1988187.</p><p></p><p>Nikolic, T., Stojcev, M., Nikolic, G., & Jovanovic, G. (2018). Energy harvesting techniques in wireless sensor networks. Facta Universitatis, Series: Automatic Control and Robotics, 17(2), 117. https://doi.org/10.22190/fuacr1802117n.</p><p></p><p>Nikolova, N.K. (2017). Scattering parameters in microwave imaging. In: Introduction to microwave imaging, pp. 154-181. Cambridge University Press. https://doi.org/ 10.1017/9781316084267.</p><p></p><p>Ordunlade, E. (2019, September 13). Basics of Smith Charts and how to use it for impedance matching. Circuit Digest. https://circuitdigest.com/article/basics-of-smith-chart-and-how-to-use-if-for-impedance-matching.</p><p></p><p>Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. https://doi.org/10.1080/23311916.2016.1167990.</p><p></p><p>Pareja Aparicio, M., Bakkali, A., Pelegri-Sebastia, J., Sogorb, T., Llario, V., & Bou, A. (2016). Radio frequency energy harvesting - Sources and techniques. In: Cao, W., & Hu. Y. (Eds.), Renewable energy - Utilisation and system integration, pp.155-170. https://doi.org/10.5772/61722.</p><p></p><p>Pop-Vadean, A., Pop, P.P., Barz, C., Latinovic, T. (2015). Research about harvesting energy devices and storage methods. Carpathian Journal of Electrical Engineering 4(2), 102-120. https://www.researchgate.net/publication/292154962_Research_ about_harvesting_energy_devices_and_storage_method.</p><p></p><p>Pratiwi, S., & Juerges, N. (2020). Review of the impact of renewable energy development on the environment and nature conservation in Southeast Asia. Energy, Ecology and Environment, 5(4), 221239. https://doi.org/10.1007 /s40974-020-00166-2.</p><p></p><p>Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors, 18(8), 2446. https://doi.org/10.3390/s18082446.</p><p></p><p>Rajiv. (2022, July 31). What is impedance matching. RF page. https://tinyurl.com/ 2hzhj8c9.</p><p></p><p>Rathod, J. (2019, September 5). RF energy harvesting-Converting radio frequency into electrical energy. Circuit Digest. https://circuitdigest.com/article/rf-energy-harvesting-converting-radio-frequency-into-electrical-energy.</p><p></p><p>Ren, H., Zhang, Y., & Zheng, S. (2020). Simulation analysis of DC bus short circuit fault in electrochemical energy storage power station. Journal of Physics: Conference Series, 1601(2), 022025. https://doi.org/10.1088/1742-6596/1601/2/022025.</p><p></p><p>RF Wireless World. (2012). Reflection coefficient and transmission coefficient formula, definition. RF Wireless World. https://www.rfwireless-world.com/Terminology/ Reflection-coefficient-vs-Transmission-coefficient.html.</p><p></p><p>Safaei, M., Sodano, H. A., & Anton, S. R. (2019). A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008-2018). Smart Materials and Structures, 28(11), 113001. https://doi.org/10.1088/1361-665x/ab36e4.</p><p></p><p>Sansoy, M., Buttar, A. S., & Goyal, R. (2020, February 27-28). Empowering wireless sensor networks with RF energy harvesting [Paper presentation]. 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India. https://doi.org/10.1109/SPIN48934.2020.9071376.</p><p></p><p>Schieweck, A., Uhde, E., Salthammer, T., Salthammer, L.C., Morawska, L., Mazaheri, M., & Kumar, P. (2018). Smart homes and the control of indoor air quality. Renewable and Sustainable Energy Reviews, 94, 705718. https://doi.org/10.1016/j.rser.2018.05.057.</p><p></p><p>Shah, M. H., & Abosaq, N. H. (2020). Wireless power transfer via inductive coupling. 3C Tecnologa_Glosas de Innovacin Aplicadas a La Pyme, Abril 2020, 107117. https://doi.org/10.17993/3ctecno.2020.specialissue5.107-117.</p><p></p><p>Sharma, S., Tripathi, C. C., & Rishi, R. (2017). Impedance matching techniques for microstrip patch antenna. Indian Journal of Science and Technology, 10(28), 116. https://doi.org/10.17485/ijst/2017/v10i28/97642.</p><p></p><p>Sherazi, H. H. R., Zorbas, D., & OFlynn, B. (2022). A comprehensive survey on RF energy harvesting: Applications and performance determinants. Sensors, 22(8), 2990. https://doi.org/10.3390/s22082990.</p><p></p><p>Sidiku, M. B., Eronu, E. M., & Ashigwuike, E. C. (2021). A review on wireless power transfer: Concepts, implementations, challenges, and mitigation scheme. Nigerian Journal of Technology, 39(4), 12061215. https://doi.org/10.4314/njt. v39i4.29.</p><p></p><p>Singh, J., Kaur, R., & Singh, D. (2020). Energy harvesting in wireless sensor networks: A taxonomic survey. International Journal of Energy Research, 45(1), 118140. https://doi.org/10.1002/er.5816.</p><p></p><p>Singh, P. (2018). Application of fractal antennas with advantages and disadvantages. International Journal of Creative Research Thoughts, 6(2), 552-554. https://tinyu rl.com/3pmw64sa.</p><p></p><p>Solar Schools. (2019). Solar energy: Shine on-Knowledge bank. Solarschools.net. https://www.solarschools.net/knowledge-bank/renewable-energy/solar/energy.</p><p></p><p>Song, C., Huang, Y., Carter, P., Zhou, J., Yuan, S., Xu, Q., & Kod, M. (2016). A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Transactions on Antennas and Propagation, 64(7), 31603171. https://doi.org/10.1109/tap.2016.2565697.</p><p></p><p>Soyata, T., Copeland, L., & Heinzelman, W. (2016). RF energy harvesting for embedded systems: A survey of tradeoffs and methodology. IEEE Circuits and Systems Magazine, 16(1), 2257. https://doi.org/10.1109/mcas.2015.2510198.</p><p></p><p>Spectrum Monitoring. (2023). Global mobile frequencies database. Spectrum Monitoring. https://www.spectrummonitoring.com/frequencies.php/.</p><p></p><p>Stutzman, W. L., & Thiele, G. A. (2012). Antenna theory and design (3rd ed.). Wiley.</p><p></p><p>Sunawar, A., Garniwa, I., & Hudaya, C. (2019). The characteristics of heat inside a parked car as energy source for thermoelectric generators. International Journal of Energy and Environmental Engineering, 10(3), 347356. https://doi.org/10.1007/s40095-019-0311-2.</p><p></p><p></p><p>Techplayon. (2017, April 19). Insertion loss, return loss and attenuation. Techplayon. https://www.techplayon.com/insertion-loss-return-loss/#:~:text=The%20ratio% 20of%20incident%20power, terminology%2C%20is%20the%20return%20loss.</p><p></p><p>ToyoChem. (2011). Column: What is electromagnetic wave shield? ToyoChem. https://tinyurl.com/yc3exu4h.</p><p></p><p>Tran, H., kerberg, J., Bjrkman, M., & Tran, H.-V. (2017). RF energy harvesting: An analysis of wireless sensor networks for reliable communication. Wireless Networks, 25(1), 185199. https://doi.org/10.1007/s11276-017-1546-6.</p><p></p><p>Tran, L-G., Cha, H-K., & Park, W-T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1), 14. https://doi.org/10.1186/s40486-017-0051-0.</p><p></p><p>Trikolikar, A., & Lahudkar, S. (2021). Design & simulation of dual-band rectifier for ambient RF energy harvesting. International Journal of Advanced Technology and Engineering Exploration, 8(83), 1383-1393. https://doi.org/10.19101/ijatee. 2021.874465.</p><p></p><p>ur Rehman, M., Ahmad, W., & Khan, W. T. (2017, November 13-16). Highly efficient dual band 2.45/5.85 GHz rectifier for RF energy harvesting applications in ISM band [Paper presentation]. IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia. https://doi.org/10.1109/APMC.2017.8251400.</p><p></p><p>ur-Rehman, M. Ahmad, W., Qureshi, M. I., & Khan, W. T. (2017, November 19-22). A highly efficient tri band (GSM1800, WiFi2400 and WiFi5000) rectifier for various radio frequency harvesting applications [Paper presentation]. Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), Singapore. https://doi.org/10.1109/PIERS-FALL.2017.8293473.</p><p></p><p>Uzun, Y. (2016). Design and implementation of RF energy harvesting system for low-power electronic devices. Journal of Electronic Materials, 45(8), 38423847. https://doi.org/10.1007/s11664-016-4441-5.</p><p></p><p>Vahdat-Nejad, H., & Asef, M. (2018). Architecture design of the air pollution mapping system by mobile crowd sensing. IET Wireless Sensor Systems, 8(6), 268275. https://doi.org/10.1049/iet-wss.2018.5130.</p><p></p><p>Vaka, M., Walvekar, R., Rasheed, A. K., & Khalid, M. (2020). A review on Malaysias solar energy pathway towards carbon-neutral Malaysia beyond Covid19 pandemic. Journal of Cleaner Production, 273, 122834. https://doi.org/10.1016/j. jclepro.2020.122834.</p><p></p><p>Van Mulders, J., Delabie, D., Lecluyse, C., Buyle, C., Callebaut, G., Van der Perre, L., & De Strycker, L. (2022). Wireless power transfer: Systems, circuits, standards, and use cases. Sensors, 22(15), 5573. https://doi.org/10.3390/s22155573.</p><p></p><p>van Zalk, J., & Behrens, P. (2018). The spatial extent of renewable and non-renewable power generation: A review and meta-analysis of power densities and their application in the U.S. Energy Policy, 123, 8391. https://doi.org/10.1016/j.enpol. 2018.08.023.</p><p></p><p>Varghese, B., John, N. E., Sreelal, S., & Gopal, K. (2016). Design and development of an RF energy harvesting wireless sensor node (EH-WSN) for aerospace applications. Procedia Computer Science, 93, 230237. https://doi.org/10.1016/j.procs.2016.07.205.</p><p></p><p>Vijayakumar, M., Adduru, J., Rao, T. N., & Karthik, M. (2018). Solar cells: Conversion of solar energy into electrical energy storage: Supercapacitor as an ultrafast energy-storage device made from biodegradable agar-agar as a novel and low-cost carbon precursor (Global Challenges 10/2018). Global Challenges, 2(10), 1870204. https://doi.org/10.1002/gch2.201870204.</p><p></p><p>Wang, L., Fei, Z., Qi, Y., Zhang, C., Zhao, L., Jiang, Z., & Maeda, R. (2022). Overview of human kinetic energy harvesting and application. ACS Applied Energy Materials, 5(6), 70917114. https://doi.org/10.1021/acsaem.2c00703.</p><p></p><p>Wikimedia Commons. (2014, December 22). File: Wireless power system - inductive coupling.svg. Wikimedia Commons. https://commons.wikimedia.org/wiki/File: Wireless_power_system_-_inductive_coupling.svg.</p><p></p><p>Yaldi, I.R.H., Rahim, A., & Ramli, M.R. (2016, December 11-13). Compact rectifier design for RF energy harvesting [Paper presentation]. IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Langkawi, Malaysia. https://doi.org/10.1109/apace.2016.7916437.</p><p></p><p>Zhang, H., Krooswyk, S., & Ou, J. (2015). Transmission line fundamentals. In: High speed digital design: Design of high-speed interconnects and signaling, pp. 126. Elsevier. https://doi.org/10.1016/b978-0-12-418663-7.00001-0.</p><p></p><p>Zhang, J-W., Bai, X., Han, W-Y., Zhao, B-H., Xu, L-J., & Wei, J-J. (2018). The design of radio frequency energy harvesting and radio frequency-based wireless power transfer system for battery-less self-sustaining applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(1), e21658. https://doi.org/10.1002/mmce.21658.</p><p></p><p>Zhao, Y.-L., Tang, J., Huang, H.-P., Wang, Z., Chen, T.-L., Chiang, C.-W., & Chiang, P.-C. (2020). Development of IoT technologies for air pollution prevention and improvement. Aerosol and Air Quality Research, 20(12), 28742888. https://doi.org/10.4209/aaqr.2020.05.0255.</p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p> |
| spellingShingle | TJ Mechanical engineering and machinery Mohd Saiful Syazwan Mohd Yusoff Design, simulate and performance analysis of GSM and Wi-Fi bands of RF energy harvesting circuits for low DC power applications |
| thesis_level | Master |
| title | Design, simulate and performance analysis of GSM and Wi-Fi bands of RF energy harvesting circuits for low DC power applications |
| title_full | Design, simulate and performance analysis of GSM and Wi-Fi bands of RF energy harvesting circuits for low DC power applications |
| title_fullStr | Design, simulate and performance analysis of GSM and Wi-Fi bands of RF energy harvesting circuits for low DC power applications |
| title_full_unstemmed | Design, simulate and performance analysis of GSM and Wi-Fi bands of RF energy harvesting circuits for low DC power applications |
| title_short | Design, simulate and performance analysis of GSM and Wi-Fi bands of RF energy harvesting circuits for low DC power applications |
| title_sort | design simulate and performance analysis of gsm and wi fi bands of rf energy harvesting circuits for low dc power applications |
| topic | TJ Mechanical engineering and machinery |
| url | https://ir.upsi.edu.my/detailsg.php?det=11826 |
| work_keys_str_mv | AT mohdsaifulsyazwanmohdyusoff designsimulateandperformanceanalysisofgsmandwifibandsofrfenergyharvestingcircuitsforlowdcpowerapplications |