Quantitative optical manipulation of a single 4-Cyano-4'-pentylbiphenyl microdroplet in water for actuating and sensing applications
| Main Author: | |
|---|---|
| Format: | Thesis |
| Language: | English |
| Published: |
2024
|
| Subjects: | |
| Online Access: | https://ir.upsi.edu.my/detailsg.php?det=11966 |
| Abstract | Abstract here |
| _version_ | 1855626278446563328 |
|---|---|
| author | Muhamad Safuan Mat Yeng@Mat Zin |
| author_facet | Muhamad Safuan Mat Yeng@Mat Zin |
| author_sort | Muhamad Safuan Mat Yeng@Mat Zin |
| description | |
| format | Thesis |
| id | upsi-11966 |
| institution | Universiti Pendidikan Sultan Idris |
| language | English |
| publishDate | 2024 |
| record_format | sWADAH |
| record_pdf | Restricted |
| spelling | upsi-119662025-02-12 Quantitative optical manipulation of a single 4-Cyano-4'-pentylbiphenyl microdroplet in water for actuating and sensing applications 2024 Muhamad Safuan Mat Yeng@Mat Zin QC Physics <p>The study aims to formulate the production of 4-cyano-4-pentylbiphenyl (5CB)</p><p>microdroplets within a suitable range to be optically trapped, to optically trap a single</p><p>5CB microdroplet in water within a suitable size range, to optically micro-control the</p><p>microdroplet using a circularly polarized laser, and to quantitatively determine factors</p><p>affecting the optical manipulation of the microdroplet. 0.5 L 5CB was mixed with the</p><p>deionized water and sonicated to produce bipolar and radial 5CB microdroplet</p><p>suspensions. The 5CB microdroplet was observed under optical microscopy and its size</p><p>distribution was measured using ImageJ, while its stability was measured using UVVis</p><p>spectroscopy. A linearly polarized laser beam of 976 nm wavelength was used to</p><p>optically trap a single 5CB microdroplet in water at a specific laser power density. A</p><p>circularly polarized laser beam was used to optically trap a single 5CB microdroplet to</p><p>study its orientation control, rotatability control, and simultaneous translation microcontrol.</p><p>A single 5CB microdroplet was trapped and introduced to the</p><p>cetyltrimethylammonium bromide (CTAB) solution to study its visual internal</p><p>configuration change and optical signal. The finding shows that the size distribution of</p><p>5CB microdroplet suspension decreased with time. However, it was stable and</p><p>sustained in 1-hour monitoring. The 5CB microdroplet could be linearly translated and</p><p>rotated, enabling the simultaneous translation-micro-control. The corner frequency (!!)</p><p>and angular speed (") showed an increasing trend with optical power density (#)</p><p>increment. Exposing CTAB solution to the trapped 5CB microdroplet changed its</p><p>internal configuration from bipolar to radial, optical signal and displacement variance</p><p>($"). In conclusion, the trapped 5CB microdroplet could be micro-controlled as a</p><p>microactuator while !!, ", and $" measurements were characteristics of microdropletbased</p><p>sensors. This study implies that the optical trapping of a single 5CB microdroplet</p><p>in water has potential for prospective actuating and sensing applications.</p> 2024 thesis https://ir.upsi.edu.my/detailsg.php?det=11966 https://ir.upsi.edu.my/detailsg.php?det=11966 text eng N/A openAccess Doctoral Perpustakaan Tuanku Bainun Fakulti Sains dan Matematik <p>Aas, M., Jon, A., & Kiraz, A. (2013). Lasing in optically manipulated, dye-doped</p><p>emulsion microdroplets. Optics Communications, 290, 183187.</p><p>https://doi.org/10.1016/j.optcom.2012.10.036</p><p></p><p>Adamow, A., Sznitko, L., & Mysliwiec, J. (2017). The influence of homogenization</p><p>process on lasing performance in polymer-nematic liquid crystal emulsions.</p><p>Optical Materials, 69, 8186. https://doi.org/10.1016/j.optmat.2017.04.011</p><p></p><p>Aery, S., Parry, A., Araiza-Calahorra, A., Evans, S. D., Gleeson, H. F., Dan, A., &</p><p>Sarkar, A. (2023). Ultra-stable liquid crystal droplets coated by sustainable plant-</p><p>based materials for optical sensing of chemical and biological analytes. Journal of</p><p>Materials Chemistry C, 11(17), 58315845. https://doi.org/10.1039/d3tc00598d</p><p></p><p>Asadinezhad, S., Khodaiyan, F., Salami, M., Hosseini, H., & Ghanbarzadeh, B. (2019).</p><p>Effect of different parameters on orange oil nanoemulsion particle size:</p><p>combination of low energy and high energy methods. Journal of Food</p><p>Measurement and Characterization, 13(4), 25012509.</p><p>https://doi.org/10.1007/s11694-019-00170-z</p><p></p><p>Ashkin, A. (1997). Optical trapping and manipulation of neutral particles. Proceeding</p><p>of the National Academy of Sciences of United States of America, 94(May), 4853</p><p>4860.</p><p></p><p>Aziz, W. N. S., Ayop, S. K., Hamid, M. Y., & Munajat, Y. (2016). Simple</p><p>Determination of the Stiffness of an Optical Trap Using Video Microscopy and</p><p>Particle Tracking. Buletin Optik 2016, 1(2), 16.</p><p></p><p>Aziz, W. N. S., Ayop, S. K., & Riyanto, S. (2015). The potential of optical tweezer</p><p>(OT) for viscoelastivity measurement of nanocellulose solution. Jurnal Teknologi,</p><p>74(8), 4548. https://doi.org/10.11113/jt.v74.4722</p><p></p><p>Baek, J.-H., Hwang, S., & Lee, Y.-G. (2007). Trap stiffness in optical tweezers. Asian</p><p>Symposium for Precision Engineering and Nanotechnology, 685, 1100.</p><p></p><p>Barto, D., Wang, L., Anker, A. S., Rewers, M., Aalling-Frederiksen, O., Jensen, K. M.</p><p>., & Srensen, T. J. (2022). Synthesis of fluorescent polystyrene nanoparticles:</p><p>a reproducible and scalable method. PeerJ Materials Science, 4, e22.</p><p>https://doi.org/10.7717/peerj-matsci.22</p><p></p><p>Berg-Srensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical</p><p>tweezers. Review of Scientific Instruments, 75(3), 594612.</p><p>https://doi.org/10.1063/1.1645654</p><p></p><p>Brasselet, E. (2008). Statics and dynamics of radial nematic liquid-crystal droplets</p><p>manipulated by laser tweezers. Physical Review E, 77(041704), 17.</p><p>https://doi.org/10.1103/PhysRevE.77.041704</p><p></p><p>Brasselet, E., Doyon, B., Galstian, T. V, & Dube, L. J. (2003). Optically induced</p><p>dynamics in nematic liquid crystals: The role of twist deformation and asymmetry.</p><p>Optic Comunications, 186, 291302.</p><p>https://doi.org/10.1103/PhysRevE.67.031706</p><p></p><p>Brasselet, E., & Juodkazis, S. (2009a). Optical angular manipulation of liquid crystal</p><p>droplets in laser tweezers. Nonlinear Optic Physics, 18(2), 167194.</p><p></p><p>Brasselet, E., & Juodkazis, S. (2009b). Optical angular manipulation of liquid crystal</p><p>droplets in laser tweezers. Journal of Nonlinear Optical Physics and Materials,</p><p>18(2), 167194. https://doi.org/10.1142/S0218863509004580</p><p></p><p>Buosciolo, A., Pesce, G., & Sasso, A. (2004). New calibration method for position</p><p>detector for simultaneous measurements of force constants and local viscosity in</p><p>optical tweezers. Optics Communications, 230(46), 357368.</p><p>https://doi.org/10.1016/j.optcom.2003.11.062</p><p></p><p>Catal, F., Mars, F., Montes-Usategui, M., Farr, A., & Martn-Badosa, E. (2017).</p><p>Influence of experimental parameters on the laser heating of an optical trap.</p><p>Scientific Reports, 7(1), 19. https://doi.org/10.1038/s41598-017-15904-6</p><p></p><p>Chen, Z., Cai, Z., Liu, W., & Yan, Z. (2022). Optical trapping and manipulation for</p><p>single-particle spectroscopy and microscopy. Journal of Chemical Physics,</p><p>157(5). https://doi.org/10.1063/5.0086328</p><p></p><p>Choi, Y., Lee, K., Gupta, K. C., Park, S. Y., & Kang, I. K. (2015). The role of ligand-</p><p>receptor interactions in visual detection of HepG2 cells using a liquid crystal</p><p>microdroplet-based biosensor. Journal of Materials Chemistry B, 3(44), 8659</p><p>8669. https://doi.org/10.1039/c5tb01213a</p><p></p><p>Concelln, A. (2023). Liquid Crystal Emulsions: A Versatile Platform for Photonics,</p><p>Sensing, and Active Matter. Angewandte Chemie - International Edition,</p><p>202308857. https://doi.org/10.1002/anie.202308857</p><p></p><p>David, C. B. W., Ayop, S. K., & Kremer, F. (2013). Resolvability Between Bare and</p><p>DNA-Grafted Microsphere by Flow Resistance Measurement using Optical</p><p>Tweezers. J. Sci. Math. Lett. UPSI, 1, 2834.</p><p>https://ejournal.upsi.edu.my/issuedetails/268</p><p></p><p>Deng, J., Han, D., & Yang, J. (2021). Applications of microfluidics in liquid crystal-</p><p>based biosensors. Biosensors, 11(10). https://doi.org/10.3390/bios11100385</p><p></p><p>Dienerowitz, M., Mazilu, M., & Dholakia, K. (2010). Optical manipulation of</p><p>nanoparticles: A review. SPIE Reviews, 1(1), 132.</p><p>https://doi.org/10.1117/1.2992045</p><p></p><p>Dierking, I., & Al-zangana, S. (2017). Lyotropic Liquid Crystal Phases from</p><p>Anisotropic Nanomaterials. Nanomaterials, 7(305).</p><p>https://doi.org/10.3390/nano7100305</p><p></p><p>Donato, M. G., Mazzulla, A., Pagliusi, P., Magazz, A., Hernandez, R. J., Provenzano,</p><p>C., Gucciardi, P. G., Marag, O. M., & Cipparrone, G. (2016). Light-induced</p><p>rotations of chiral birefringent microparticles in optical tweezers. Scientific</p><p>Reports, 6(September). https://doi.org/10.1038/srep31977</p><p></p><p>Duan, R., Hao, X., Li, Y., & Li, H. (2020). Detection of acetylcholinesterase and its</p><p>inhibitors by liquid crystal biosensor based on whispering gallery mode. Sensors</p><p>and Actuators B : Chemical, 308(November 2019), 127672.</p><p>https://doi.org/10.1016/j.snb.2020.127672</p><p></p><p>Duan, R., Li, Y., Shi, B., Li, H., & Yang, J. (2020). Real-time, quantitative and sensitive</p><p>detection of urea by whispering gallery mode lasing in liquid crystal microdroplet.</p><p>Talanta, 209(October). https://doi.org/10.1016/j.talanta.2019.120513</p><p></p><p>Duan, R., Yanzeng, L., Hanyang, L., & Jun, Y. (2019). Detection of heavy metal ions</p><p>using whispering gallery mode lasing in functionalized liquid crystal</p><p>microdroplets. Biomedical Optics Express, 10(12), 60736083.</p><p></p><p>Eom, N., Sedev, R., Wedding, B., & Connor, J. (2014). Probing Fluid Flow Using the</p><p>Force Measurement Capability of Optical Trapping. Advanced Power Technology,</p><p>25(4), 12491253.</p><p></p><p>Esteves, C., Ramou, E., Porteira, A. R. P., Moura Barbosa, A. J., & Roque, A. C. A.</p><p>(2020). Seeing the Unseen: The Role of Liquid Crystals in Gas-Sensing</p><p>Technologies. Advanced Optical Materials, 8(11).</p><p>https://doi.org/10.1002/adom.201902117</p><p></p><p>Fernndez-Canto, N., Romero-Rodrguez, M. ., Ramos-Cabrer, A. M., Pereira-</p><p>Lorenzo, S., & Lombardero-Fernndez, M. (2023). Polarized light microscopy</p><p>guarantees the use of autochthonous wheat in the production of flour for the</p><p>Protected Geographical Indication Galician Bread. Food Control,</p><p>147(November 2022). https://doi.org/10.1016/j.foodcont.2022.109597</p><p></p><p>Ferreira, T., & Rasband, W. (2012). User Guide ImageJ. Image J User Guide, 1.46r.</p><p>https://doi.org/10.1038/nmeth.2019</p><p></p><p>Garratt, R. C., & Bachega, F. R. (2013). Optical Tweezers. In Biophysics (pp. 1800</p><p>1807). https://doi.org/10.1007/978-3-642-16712-6</p><p></p><p>Gleeson, H. F., Wood, T. A., & Dickinson, M. (2006). Laser manipulation in liquid</p><p>crystals: An approach to microfluidics and micromachines. Philosophical</p><p>Transactions of the Royal Society A: Mathematical, Physical and Engineering</p><p>Sciences, 364(1847), 27892805. https://doi.org/10.1098/rsta.2006.1855</p><p></p><p>Goswami, D. (2018). Nobel Prize in Physics 2018. Resonance, 23(12), 13331341.</p><p>https://doi.org/10.1007/s12045-018-0744-6</p><p></p><p>Hamid, M. Y., Ayop, S. K., Aziz, W. N. S., & Munajat, Y. (2016). Spatial Distribution</p><p>of an Optically Trapped Bead in Water. Buletin Optik 2016, 33(2), 25.</p><p>https://doi.org/10.15011/jasma.33.330211</p><p></p><p>Hanemann, T., Haase, W., Svoboda, I., & Fuess, H. (1995). Crystal structure of 4-</p><p>pentyl-4-cyanobiphenyl (5CB). Liquid Crystals, 19(5), 699702.</p><p>https://doi.org/10.1080/02678299508031086</p><p></p><p>Hegner, M., Gerber, C., Arntz, Y., Zhang, J., & Bertoncini, P. (2003). Biological Single</p><p>Molecule Applications and Advanced Biosensing. Journal of Chromatography</p><p>Library, 13, 241263.</p><p></p><p>Horst, A. Van Der, Forde, N. R., van der Horst, A., & Forde, N. R. (2010). Power</p><p>spectral analysis for optical trap stiffness calibration from high-speed camera</p><p>position detection with limited bandwidth. Optics Express, 18(8), 7670.</p><p>https://doi.org/10.1364/oe.18.007670</p><p></p><p>Humar, M., & Muevi, I. (2011). Surfactant sensing based on whispering-gallery-</p><p>mode lasing in liquid-crystal microdroplets. Optics Express, 19(21), 19836.</p><p>https://doi.org/10.1364/oe.19.019836</p><p></p><p>Ito, K., Frusawa, H., & Kimura, M. (2012). Precise switching control of liquid</p><p>crystalline microgears driven by circularly polarized light. Optics Express, 20(4),</p><p>19911996.</p><p></p><p>Iwabata, K., Sugai, U., Seki, Y., Furue, H., & Sakaguchi, K. (2013). Applications of</p><p>Biomaterials to Liquid Crystals. Molecules, 47034717.</p><p>https://doi.org/10.3390/molecules18044703</p><p></p><p>Josue H., R. (2012). Optical trapping and manipulation exploiting liquid crystalline</p><p>systems.</p><p></p><p>Juodkazis, S., Shikata, M., Takahashi, T., Matsuo, S., & Misawa, H. (1999). Fast optical</p><p>switching by a laser-manipulated microdroplet of liquid crystal. Applied Physics</p><p>Letters, 74(24), 36273629. https://doi.org/10.1063/1.123203</p><p></p><p>Khoo, I. C. (2009). Nonlinear optics of liquid crystalline materials. In Physics Reports</p><p>(Vol. 471, Issues 56, pp. 221267). Elsevier B.V.</p><p>https://doi.org/10.1016/j.physrep.2009.01.001</p><p></p><p>Kiang-Ia, J., Taeudomkul, R., Prajongtat, P., Tin, P., Pattanaporkratana, A., &</p><p>Chattham, N. (2021). Anomalous lehmann rotation of achiral nematic liquid</p><p>crystal droplets trapped under linearly polarized optical tweezers. Molecules,</p><p>26(14). https://doi.org/10.3390/molecules26144108</p><p></p><p>Konyshev, I., & Byvalov, A. (2021). Model systems for optical trapping: the physical</p><p>basis and biological applications The theory of optical trapping at macro-, meso-,</p><p>and microscopic levels of detail. Biophysical Reviews, 13, 515529.</p><p>https://doi.org/10.1007/s12551-021-00823-8</p><p></p><p>Kudo, T., Wang, S., Yuyama, K., & Masuhara, H. (2016). Optical Trapping-Formed</p><p>Colloidal Assembly with Horns Extended to the Outside of a Focus through Light</p><p>Propagation. https://doi.org/10.1021/acs.nanolett.6b00123</p><p></p><p>Kulkarni, S., Kumar, S., & Thareja, P. (2021). Colloidal and fumed particles in nematic</p><p>liquid crystals: Self-assembly, confinement and implications on rheology. In</p><p>Journal of Molecular Liquids (Vol. 336, p. 116241). Elsevier B.V.</p><p>https://doi.org/10.1016/j.molliq.2021.116241</p><p></p><p>Lee, G., Araoka, F., Ishikawa, K., Momoi, Y., & Haba, O. (2013). Photoinduced</p><p>Ordering Transition in Microdroplets of Liquid Crystals with Azo-Dendrimer.</p><p>Particle & Particle System Characterization, 30, 847852.</p><p>https://doi.org/10.1002/ppsc.201300110</p><p></p><p>Lee, K., Gupta, C., Park, S., & Kang, I. (2015a). Anti-IgG-anchored liquid crystal</p><p>microdroplets for label free detection of IgG. Journal of Materials Chemistry B.</p><p>https://doi.org/10.1039/C5TB02131F</p><p></p><p>Li, X., Sha, X. M., Yang, H. S., Ren, Z. Y., & Tu, Z. C. (2023). Ultrasonic treatment</p><p>regulates the properties of gelatin emulsion to obtain high-quality gelatin film.</p><p>Food Chemistry: X, 18(April), 100673.</p><p>https://doi.org/10.1016/j.fochx.2023.100673</p><p></p><p>Liu, Q., Asavei, T., Lee, T., Rubinsztein-dunlop, H., He, S., & Smalyukh, I. I. (2011).</p><p>Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-</p><p>trapped microparticles. Optical Society of America, 19(25), 2513425143.</p><p></p><p>Loussert, C., Delabre, U., & Brasselet, E. (2013). Manipulating the Orbital Angular</p><p>Momentum of Light at the Micron Scale with Nematic Disclinations in a Liquid</p><p>Crystal Film. Physical Review Letters, 037802(July), 14.</p><p>https://doi.org/10.1103/PhysRevLett.111.037802</p><p></p><p>Malagnino, N., Pesce, G., Sasso, A., & Arimondo, E. (2002). Measurements of trapping</p><p>efficiency and stiffness in optical tweeser. Optics Communications, 214, 1524.</p><p></p><p>Malmqvist, L., & Hertz, H. M. (1992). Trapped particle optical microscopy. Optics</p><p>Communications, 94(13), 1924. https://doi.org/10.1016/0030-4018(92)90398-</p><p>B</p><p></p><p>Manzo, C., Paparo, D., Marrucci, L., & Jnossy, I. (2006). Light-induced rotation of</p><p>dye-doped liquid crystal droplets. Physical Review E - Statistical, Nonlinear, and</p><p>Soft Matter Physics, 73(5). https://doi.org/10.1103/PhysRevE.73.051707</p><p></p><p>Mas, J., Farr, A., Cuadros, J., Juvells, I., & Carnicer, A. (2011). Understanding optical</p><p>trapping phenomena: A simulation for undergraduates. IEEE Transactions on</p><p>Education, 54(1), 133140. https://doi.org/10.1109/TE.2010.2047107</p><p></p><p>Merola, F., Grilli, S., Coppola, S., Vespini, V., De Nicola, S., Maddalena, P., Carfagna,</p><p>C., & Ferraro, P. (2013). Pyroelectric manipulation of liquid crystal droplets.</p><p>Proceeding of SPIE, 8792, 87920V. https://doi.org/10.1117/12.2020555</p><p></p><p>Mertelj, A., & Lisjak, D. (2017). Ferromagnetic nematic liquid crystals. Liquid Crystals</p><p>Reviews, 5(1), 133. https://doi.org/10.1080/21680396.2017.1304835</p><p></p><p>Mirantsev, L. V., de Oliveira, E. J. L., de Oliveira, I. N., & Lyra, M. L. (2016). Defect</p><p>structures in nematic liquid crystal shells of different shapes. Liquid Crystals</p><p>Reviews, 4(1), 3558. https://doi.org/10.1080/21680396.2016.1183151</p><p></p><p>Miura, A., Nakajima, R., Abe, S., & Kitamura, N. (2020). Optical Trapping-</p><p>Microspectroscopy of Single Aerosol Microdroplets in Air: Supercooling of</p><p>Dimethylsulfoxide Microdroplets. Journal of Physical Chemistry A, 124(43),</p><p>90359043. https://doi.org/10.1021/acs.jpca.0c06179</p><p></p><p>Mohammad, S., Winson, W. T., & Bahman, A. (2014). Comparative study of methods</p><p>to calibrate the stiffness of a single-beam gradient-force optical tweezers over</p><p>various laser trapping powers. Journal of Biomedical Optics, 11, 115001.</p><p>https://doi.org/10.1109/iembs.1999.802433</p><p></p><p>Mllenbroich, M. C., McAlinden, N., & Wright, A. J. (2013). Adaptive optics in an</p><p>optical trapping system for enhanced lateral trap stiffness at depth. Journal of</p><p>Optics (United Kingdom), 15(7). https://doi.org/10.1088/2040-8978/15/7/075305</p><p></p><p>Murazawa, N., Juodkazis, S., Matsuo, S., & Misawa, H. (2005). Control of the</p><p>Molecular Alignment Inside Liquid- Crystal Droplets by Use of Laser Tweezers.</p><p>Small, 6, 656661. https://doi.org/10.1002/smll.200500038</p><p></p><p>Murazawa, N., Juodkazis, S., & Misawa, H. (2005). Characterization of bipolar and</p><p>radial nematic liquid crystal droplets using laser-tweezers. Journal of Physics D:</p><p>Applied Physics, 38(16), 29232927. https://doi.org/10.1088/0022-</p><p>3727/38/16/027</p><p></p><p>Murazawa, N., Juodkazis, S., & Misawa, H. (2006a). Laser manipulation and</p><p>characterization of liquid crystal droplets. Proceeding of SPIE, 6326, 19.</p><p>https://doi.org/10.1117/12.685058</p><p></p><p>Murazawa, N., Juodkazis, S., & Misawa, H. (2006b). Laser manipulation of a smectic</p><p>liquid-crystal droplet. The European Physical Journal E, 439, 435439.</p><p>https://doi.org/10.1140/epje/i2006-10033-1</p><p></p><p>Neuman, K. C., & Block, S. M. (2004). Optical trapping. Review of Scientific</p><p>Instruments, 75(9), 27872809. https://doi.org/10.1063/1.1785844</p><p></p><p>Neves, A. A. R., Jones, P. H., Luo, L., & Marag, O. M. (2015). Optical cooling and</p><p>trapping: introduction. Journal of the Optical Society of America B, 32(5), OCT1.</p><p>https://doi.org/10.1364/josab.32.00oct1</p><p></p><p>Nieminen, T. A., Du Preez-Wilkinson, N., Stilgoe, A. B., Loke, V. L. Y., Bui, A. A.</p><p>M., & Rubinsztein-Dunlop, H. (2014). Optical tweezers: Theory and modelling.</p><p>Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 5980.</p><p>https://doi.org/10.1016/j.jqsrt.2014.04.003</p><p></p><p>Nishii, H. (2021). Effect of Measurement Parameters on UV-VIS Absorption Spectra.</p><p>UV Talk Letter, 21, 114.</p><p></p><p>Niu, X., Luo, D., Chen, R., Wang, F., Sun, X., & Dai, H. (2016). Optical biosensor</p><p>based on liquid crystal droplets for detection of cholic acid. Optics</p><p>Communications, 381, 286291. https://doi.org/10.1016/j.optcom.2016.07.016</p><p></p><p>Oster, L. M., Shechter, J., Strain, B., Shivrayan, M., Thayumanavan, S. T., & Ross, J.</p><p>L. (2022). Controlling Liquid Crystal Configuration and Phase Using Multiple</p><p>Molecular Triggers. Molecules, 27(3), 117.</p><p>https://doi.org/10.3390/molecules27030878</p><p></p><p>Pai, P., Zandrini, T., Mart, R., & Bragheri, F. (2018). Particle Manipulation by Optical</p><p>Forces in Microfluidic Devices. Micromachines, 9(200), 121.</p><p>https://doi.org/10.3390/mi9050200</p><p></p><p>Palffy-muhoray, P. (2007). The diverse world of liquid crystals. Physics Today,</p><p>54(2007), 5460. https://doi.org/10.1063/1.2784685</p><p></p><p>Parmentier, E. A., Arroyo, P. C., Bibawi, S., Esat, K., & Signorell, R. (2021).</p><p>Photochemistry of single optically trapped oleic acid droplets. Journal of Aerosol</p><p>Science, 151(August 2020), 010.</p><p>https://doi.org/https://doi.org/10.1016/j.jaerosci.2020.105660</p><p></p><p>Patel, N., Rawat, S., Joglekar, M., Chhaniwal, V., Dubey, S. K., OConnor, T., Javidi,</p><p>B., & Anand, A. (2021). Compact and low-cost instrument for digital holographic</p><p>microscopy of immobilized micro-particles. Optics and Lasers in Engineering,</p><p>137(May 2020). https://doi.org/10.1016/j.optlaseng.2020.106397</p><p></p><p>Paul, D., Chand, R., & Kumar, G. V. P. (2022). Optothermal Evolution of Active</p><p>Colloidal Matter in a Defocused Laser Trap. ACS Photonics, 9(10), 34403449.</p><p>https://doi.org/10.1021/acsphotonics.2c01083</p><p></p><p>Peddireddy, K., Kumar, P., Thutupalli, S., Herminghaus, S., & Bahr, C. (2012).</p><p>Solubilization of thermotropic liquid crystal compounds in aqueous surfactant</p><p>solutions. Langmuir, 28(34), 1242612431. https://doi.org/10.1021/la3015817</p><p></p><p>Peterman, E. J. G., Gittes, F., & Schmidt, C. F. (2003). Laser-induced heating in optical</p><p>traps. Biophysical Journal, 84(2 I), 13081316. https://doi.org/10.1016/S0006-</p><p>3495(03)74946-7</p><p></p><p>Phanphak, S., Pattanaporkratana, A., Limtrakul, J., & Chattham, N. (2014). Precession</p><p>mechanism of nematic liquid crystal droplets under low power optical tweezers.</p><p>Ferroelectrics, 468(1), 114122. https://doi.org/10.1080/00150193.2014.933663</p><p></p><p>Polimeno, P., Magazz, A., Iat, M. A., Patti, F., Saija, R., Esposti Boschi, C. D.,</p><p>Donato, M. G., Gucciardi, P. G., Jones, P. H., Volpe, G., & Marag, O. M. (2018).</p><p>Optical tweezers and their applications. Journal of Quantitative Spectroscopy and</p><p>Radiative Transfer, 218, 131150. https://doi.org/10.1016/j.jqsrt.2018.07.013</p><p></p><p>Popov, N., Honaker, L. W., Popova, M., Usoltseva, N., Mann, E. K., Jkli, A., &</p><p>Popov, P. (2017). Thermotropic liquid crystal-assisted chemical and biological</p><p>sensors. In Materials (Vol. 11, Issue 1, pp. 1417).</p><p>https://doi.org/10.3390/ma11010020</p><p></p><p>Popov, Piotr, K. Mann, Elizabeth, Jakli, Antal. (2017). Thermotropic Liquid Crystal</p><p>Films for Biosensor and Beyond. Journal of Materials Chemistry B.</p><p>https://doi.org/10.1039/C7TB00809K</p><p></p><p>Prakash, J., Parveen, A., Kumar, Y., & Kaushik, A. (2020). Nanotechnology-assisted</p><p>liquid crystals-based biosensors : Towards fundamental to advanced applications.</p><p>Biosensors and Bioelectronics, 168(June), 112562.</p><p>https://doi.org/10.1016/j.bios.2020.112562</p><p></p><p>Qin, L., Liu, X., & Yu, Y. (2021). Soft Actuators of Liquid Crystal Polymers Fueled by</p><p>Light from Ultraviolet to Near Infrared. Advanced Optical Materials, 9(7), 127.</p><p>https://doi.org/10.1002/adom.202001743</p><p></p><p>Ribeiro, R. S. R., Dahal, P., Guerreiro, A., & Jorge, P. A. S. (2017). Fabrication of</p><p>Fresnel plates on optical fibres by FIB milling for optical trapping , manipulation</p><p>and detection of single cells. Nature Scientific Report, May, 114.</p><p>https://doi.org/10.1038/s41598-017-04490-2</p><p></p><p>Rui, G., Li, Y., Gu, B., Cui, Y., & Zhan, Q. (2021). Optical manipulation of</p><p>nanoparticles with structured light. In Thin Film Nanophotonics: Conclusions</p><p>from the Third International Workshop on Thin Films for Electronics, Electro-</p><p>Optics, Energy and Sensors (TFE3S). LTD. https://doi.org/10.1016/B978-0-12-</p><p>822085-6.00008-X</p><p></p><p>Saito, K., & Kimura, Y. (2022). Optically driven liquid crystal droplet rotator. Scientific</p><p>Reports, 12(1), 18. https://doi.org/10.1038/s41598-022-21146-y</p><p></p><p>Sanders, J. L., Yang, Y., Dickinson, M. R., & Gleeson, H. F. (2013b). Pushing, pulling</p><p>and twisting liquid crystal systems: Exploring new directions with laser</p><p>manipulation. Philosophical Transactions of the Royal Society A: Mathematical,</p><p>Physical and Engineering Sciences, 371(1988), 20120265.</p><p>https://doi.org/10.1098/rsta.2012.0265</p><p></p><p>Sarshar, M., Wong, W. T., & Anvari, B. (2014). Comparative study of methods to</p><p>calibrate the stiffness of a single-beam gradient-force optical tweezers over</p><p>various laser trapping powers. Journal of Biomedical Optics, 19(11), 115001.</p><p>https://doi.org/10.1117/1.jbo.19.11.115001</p><p></p><p>Scharf, T. (2006). Polarized Light in Liquid Crystals and Polymers. In Polarized Light</p><p>in Liquid Crystals and Polymers. John Wiley & Sons.</p><p>https://doi.org/10.1002/9780470074374</p><p></p><p>Sen, A., Kupcho, K. A., Grinwald, B. A., Vantreeck, H. J., & Acharya, B. R. (2013).</p><p>Liquid crystal-based sensors for selective and quantitative detection of nitrogen</p><p>dioxide. Sensors and Actuators, B: Chemical, 178, 222227.</p><p>https://doi.org/10.1016/j.snb.2012.12.036</p><p></p><p>Sengupta, A., Herminghaus, S., & Bahr, C. (2014). Liquid crystal microfluidics:</p><p>surface, elastic and viscous interactions at microscales. Liquid Crystals Reviews,</p><p>2(2), 73110. https://doi.org/10.1080/21680396.2014.963716</p><p></p><p>Shafiei, M., Kazemzadeh, Y., Martyushev, D. A., Dai, Z., & Riazi, M. (2023). Effect</p><p>of chemicals on the phase and viscosity behavior of water in oil emulsions.</p><p>Scientific Reports, 13(1), 114. https://doi.org/10.1038/s41598-023-31379-0</p><p></p><p>Shechter, J., Atzin, N., Mozaffari, A., Zhang, R., Zhou, Y., Strain, B., Oster, L. M., De</p><p>Pablo, J. J., & Ross, J. L. (2020). Direct Observation of Liquid Crystal Droplet</p><p>Configurational Transitions using Optical Tweezers. Langmuir, 36(25), 7074</p><p>7082. https://doi.org/10.1021/acs.langmuir.9b03629</p><p></p><p>Shen, Y., & Dierking, I. (2019). Perspectives in Liquid-Crystal-Aided Nanotechnology</p><p>and Nanoscience. Appl. Sci., 9, 2512.</p><p></p><p>Shih, T. W., Hsu, C. L., Chen, L. Y., Huang, Y. C., Chen, C. J., Inoue, Y., & Sugiyama,</p><p>T. (2021). Optical Trapping-Induced New Polymorphism of -Cyclodextrin in</p><p>Unsaturated Solution. Crystal Growth and Design, 21(12), 69136923.</p><p>https://doi.org/10.1021/acs.cgd.1c00822</p><p></p><p>Simmons, R. M., Finer, J. T., Chu, S., & Spudich, J. A. (1996). Quantitative</p><p>measurements of force and displacement using an optical trap. Biophysical</p><p>Journal, 70(4), 18131822. https://doi.org/10.1016/S0006-3495(96)79746-1</p><p></p><p>karabot, M., Osterman, N., Lokar, ., & Muevi, I. (2014). Manipulation of particles</p><p>by laser tweezers-induced gradient of order in the nematic liquid crystal. Optical</p><p>Trapping and Optical Micromanipulation XI, 9164, 91642B.</p><p>https://doi.org/10.1117/12.2061308</p><p></p><p>Smalyukh, I. I., Kachynski, A. V, Kuzmin, A. N., & Prasad, P. N. (2006). Laser trapping</p><p>in anisotropic fluids and polarization-controlled particle dynamics. Proceeding of</p><p>the National Academy of Sciences of United States of America, 103(48).</p><p></p><p>Smalyukh, I. I., Kaputa, D. S., Kachynski, A. V., Kuzmin, A. N., & Prasad, P. N.</p><p>(2007). Optical trapping of director structures and defects in liquid crystals using</p><p>laser tweezers. Optics Express, 15(7), 4359. https://doi.org/10.1364/oe.15.004359</p><p></p><p>Sofi, J. A., & Dhara, S. (2019). Stability of liquid crystal micro-droplets based optical</p><p>microresonators. Liquid Crystals, 46(4), 629639.</p><p>https://doi.org/10.1080/02678292.2018.1515373</p><p></p><p>Sotolongo-Costa, O., Moreno-Vega, Y., Lloveras-Gonzlez, J. J., & Antoranz, J. C.</p><p>(1996). Criticality in Droplet Fragmentation. Physical Review Letters, 76(1), 42</p><p>45. https://doi.org/10.1103/PhysRevLett.76.42</p><p></p><p>Srivastava, G., Jaiswal, M., Singh, P., Iqbal, A., Dabrowski, R., & Dhar, R. (2023).</p><p>Enhanced stability of the nematic phase of 4-pentyl-4-cyanobiphenyl due to the</p><p>dispersion of copper nanoparticles. Liquid Crystals, 00(00), 114.</p><p>https://doi.org/10.1080/02678292.2023.2219990</p><p></p><p>Suga, M., Suda, S., Ichikawa, M., & Kimura, Y. (2018). Self-propelled motion</p><p>switching in nematic liquid crystal droplets in aqueous surfactant solutions.</p><p>Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 062703, 18.</p><p>https://doi.org/10.1103/PhysRevE.97.062703</p><p></p><p>Sugiyama, T., Yuyama, K., & Masuhara, H. (2012). Laser trapping chemistry: From</p><p>polymer assembly to amino acid crystallization. Accounts of Chemical Research,</p><p>45(11), 19461954. https://doi.org/10.1021/ar300161g</p><p></p><p>Supian, F. L., Richardson, T. H., Deasy, M., Kelleher, F., Ward, J. P., & McKee, V.</p><p>(2010). Interaction between Langmuir and Langmuir-Blodgett films of two</p><p>calix[4]arenes with aqueous copper and lithium ions. Langmuir, 26(13), 10906</p><p>10912. https://doi.org/10.1021/la100808r</p><p></p><p>Tadros, T. F. (2013). Emulsion Formation and Stability.</p><p>Taylor, P., Kleman, M., & Lavrentovich, O. D. (2006). Topological point defects in</p><p>nematic liquid crystals. Philosophical Magazine, 86(September 2012), 3741.</p><p>https://doi.org/10.1080/14786430600593016</p><p></p><p>Taylor, P., Ward, A. D., Longhurst, M., & Quirke, N. (2005). The optical trapping of</p><p>airborne hydrocarbon droplets from an oil mist. Journal of Experimental</p><p>Nanoscience, 1(1), 7582. https://doi.org/10.1080/17458080500328003</p><p></p><p>Tsuji, T., Doi, K., & Kawano, S. (2022). Optical trapping in micro- and</p><p>nanoconfinement systems: Role of thermo-fluid dynamics and applications.</p><p>Journal of Photochemistry and Photobiology C: Photochemistry Reviews,</p><p>52(October 2021), 100533. https://doi.org/10.1016/j.jphotochemrev.2022.100533</p><p></p><p>T-thienprasert, J., Limtrakul, J., Zentgraf, T., Chattham, N., Meyer, F., Schlickriede,</p><p>C., Chaisakul, P., & Zentgraf, T. (2019). Miniaturized Metalens Based Optical</p><p>Tweezers on Optical Motors. Crystals, 9(515).</p><p></p><p>Upadhyay, P., Rastogi, M. K., & Kumar, D. (2015). Polarizability study of nematic</p><p>liquid crystal 4-cyano-4 0 -pentylbiphenyl ( 5CB ) and its nitrogen derivatives.</p><p>Chemical Physics, 456, 4146. https://doi.org/10.1016/j.chemphys.2015.03.011</p><p></p><p>Urbanski, M., Reyes, C. G., Noh, J., Sharma, A., Geng, Y., Subba Rao Jampani, V., &</p><p>Lagerwall, J. P. F. (2017). Liquid crystals in micron-scale droplets , shells and</p><p>fibers. Journal of Physics: Condensed Matter, 29(13), 53.</p><p>https://doi.org/10.1088/1361-648X/aa5706</p><p></p><p>Usman, A., Chiang, W., Uwada, T., & Masuhara, H. (2012). Laser Trapping-Induced</p><p>Reconfiguration of Individual Smectic Liquid Crystal Micro-Droplet Showing</p><p>Size-Dependent Dynamics. SPIE, 8274, 18. https://doi.org/10.1117/12.906305</p><p></p><p>Usman, A., Chiang, W., Uwada, T., & Masuhara, H. (2013). Polarization and Droplet</p><p>Size Effects in the Laser-Trapping-Induced Reconfiguration in Individual Nematic</p><p>Liquid Crystal Microdroplets. The Journal of Physical Chemistry B, 117, 4536</p><p>4540.</p><p></p><p>Usman, A., Uwada, T., & Masuhara, H. (2011). Optical Reorientation and Trapping of</p><p>Nematic Liquid Crystals Leading to the Formation of Micrometer-Sized Domain.</p><p>The Journal of Physical Chemistry, 1190611913.</p><p></p><p>Wang, H., Qin, Q. H., Ji, H., & Sun, Y. (2011). Comparison among different modeling</p><p>techniques of 3D micromechanical modeling of damage in unidirectional</p><p>composites. Advanced Science Letters, 4(2), 400407.</p><p>https://doi.org/10.1166/asl.2011.1261</p><p></p><p>Wang, X., Bukusoglu, E., & Abbott, N. L. (2017). A practical guide to the preparation</p><p>of liquid crystal-templated microparticles. Chemistry of Materials, 29(1), 5361.</p><p>https://doi.org/10.1021/acs.chemmater.6b02668</p><p></p><p>Wang, Y., Li, H., Zhao, L., Liu, Y., Liu, S., & Yang, J. (2016). Tunable whispering</p><p>gallery modes lasing in dye-doped cholesteric liquid crystal microdroplets.</p><p>Applied Physics Letters, 109(23). https://doi.org/10.1063/1.4971973</p><p></p><p>Wang, Z., Zhang, Y., Gong, X., Yuan, Z., Feng, S., Xu, T., Liu, T., & Chen, Y. (2020).</p><p>Bio-electrostatic sensitive droplet lasers for molecular detection. Nanoscale</p><p>Advanced, 17. https://doi.org/10.1039/d0na00107d</p><p></p><p>Wei, Y. Y., Sun, Z. Q., Ren, H. H., & Li, L. (2019). Advances in Microdroplet</p><p>Generation Methods. Chinese Journal of Analytical Chemistry, 47(6), 795804.</p><p>https://doi.org/10.1016/S1872-2040(19)61162-X</p><p></p><p>Wo, T., Wurzbach, I., Kirres, J., Kostidou, A., Kapernaum, N., Litterscheidt, J., Haenle,</p><p>J. C., Sta, P., Baro, A., Giesselmann, F., & Laschat, S. (2015). Discotic Liquid</p><p>Crystals. Chemical Reviews. https://doi.org/10.1021/acs.chemrev.5b00190</p><p></p><p>Wood, T. A., Gleeson, H. F., Dickinson, M. R., & Wright, A. J. (2004). Mechanisms</p><p>of optical angular momentum transfer to nematic liquid crystalline droplets.</p><p>Applied Physics Letters, 84(21), 42924294. https://doi.org/10.1063/1.1753067</p><p></p><p>Wright, W. H., Sonek, G. J., & Berns, M. W. (1994). Parametric study of the forces on</p><p>microspheres held by optical tweezers. Applied Optics, 33(9), 17351748.</p><p></p><p>Wu, C. S., Hsieh, P. Y., Yuyama, K. I., Masuhara, H., & Sugiyama, T. (2018).</p><p>Pseudopolymorph Control of l -Phenylalanine Achieved by Laser Trapping.</p><p>Crystal Growth and Design, 18(9), 54175425.</p><p>https://doi.org/10.1021/acs.cgd.8b00796</p><p></p><p>Wulff, D., Chan, A., Liu, Q., Gu, F. X., & Aucoin, M. G. (2020). Characterizing internal</p><p>cavity modulation of corn starch microcapsules. Heliyon, 6(10), e05294.</p><p>https://doi.org/10.1016/j.heliyon.2020.e05294</p><p></p><p>Xie, M. (2021). Principle of optical tweezers trapping. Autonomous Robot-Aided</p><p>Optical Manipulation for Biological Cells, 313. https://doi.org/10.1016/b978-0-</p><p>12-823449-5.00003-4</p><p></p><p>Yan, Wang., Hanyang, Li., Liyuan, Zhao., Yongjun, Liu., Shuangqiang, Liu., & Jun,</p><p>Yang. (2017). Tapered optical fiber waveguide coupling to whispering gallery</p><p>modes of liquid crystal microdroplet for thermal sensing application. Optics</p><p>Express, 25(2), 32403247.</p><p></p><p>Yang, Y., Brimicombe, P. D., Roberts, N. W., Dickinson, M. R., Osipov, M., &</p><p>Gleeson, H. F. (2008). Continuously rotating chiral liquid crystal droplets in a</p><p>linearly polarized laser trap. Optics Express, 16(10), 68776882.</p><p></p><p>Yeng, M. S. M., & Ayop, S. K. (2022). The trapping of a single 4-cyano-4-</p><p>pentylbiphenyl (5CB) microdroplet in water using optical tweezers. Proceeding of</p><p>SPIE, 12479(December), 191. https://doi.org/10.1117/12.2658779</p><p></p><p>Yeng, M. S. M., Ayop, S. K., & Hamid, M. Y. (2017). The Determination of Laser Spot</p><p>Size of an Optical Tweezers by Stuck Bead Method. Journal of Science and</p><p>Technology, 9(3), 7074.</p><p></p><p>Yeng, M. S. M., Ayop, S. K., Mustapa, I. R., & Sasaki, K. (2022). Optical Stiffness of</p><p>an Optically Trapped 4-Cyano-4-Pentylbiphenyl (5CB) in the form of a</p><p>Microdroplet in Water. Central Asia and the Caucasus, 23(1), 30083016.</p><p></p><p>Yeng, M. S. M., Ayop, S. K., & Sasaki, K. (2022). Optical Manipulation of a Liquid</p><p>Crystal (LC) Microdroplet by Optical Force. Crystal Research and Technology,</p><p>n/a(n/a), 2200080. https://doi.org/https://doi.org/10.1002/crat.202200080</p><p></p><p>Yeng, M. S. M., Ayop, S. K., & Sasaki, K. (2023). Optical Trapping of a Single</p><p>Chloroform Microdroplet. Jurnal Teknologi, 85(3), 117123.</p><p>https://doi.org/https://doi.org/10.11113/jurnalteknologi.v85.19303</p><p></p><p>Yusof, M. F. M., Ayop, S. K., Supian, F. L., & Juahir, Y. (2020). Optical trapping of</p><p>organic solvents in the form of microdroplets in water. Chemical Physics Letters,</p><p>749(January), 137407. https://doi.org/10.1016/j.cplett.2020.137407</p><p></p><p>Yusuf, M. F. M., & Ayop, S. K. (2020). The trapping of a single chloroform</p><p>microdroplet in water using optical tweezers. SPIE, 11522(June), 18.</p><p>https://doi.org/10.1117/12.2573528</p><p></p><p>Zeng, H. (2017). Light Driven Microscopic Robot (Issue October).</p><p>https://doi.org/10.13140/RG.2.2.28029.46564</p><p></p><p>Zhang, J., Liu, W., Zhu, Z., Yuan, X., & Qin, S. (2016). Towards nano-optical tweezers</p><p>with graphene plasmons : Numerical investigation of trapping 10-nm particles</p><p>with mid-infrared light. Nature Publishing Group, November, 17.</p><p>https://doi.org/10.1038/srep38086</p><p></p><p>Zhong, M. C., Wang, Z. Q., & Li, Y. M. (2017). Oscillations of absorbing particles at</p><p>the water-air interface induced by laser tweezers. Optics Express, 25(3), 2481</p><p>2488. https://doi.org/10.1364/OE.25.002481</p><p></p><p>Zhu, C., Lu, Y., Jiang, L., & Yu, Y. (2021). Liquid Crystal Soft Actuators and Robots</p><p>toward Mixed Reality. Advanced Functional Materials, 2009835, 121.</p><p>https://doi.org/10.1002/adfm.202009835</p><p></p> |
| spellingShingle | QC Physics Muhamad Safuan Mat Yeng@Mat Zin Quantitative optical manipulation of a single 4-Cyano-4'-pentylbiphenyl microdroplet in water for actuating and sensing applications |
| thesis_level | PhD |
| title | Quantitative optical manipulation of a single 4-Cyano-4'-pentylbiphenyl microdroplet in water for actuating and sensing applications |
| title_full | Quantitative optical manipulation of a single 4-Cyano-4'-pentylbiphenyl microdroplet in water for actuating and sensing applications |
| title_fullStr | Quantitative optical manipulation of a single 4-Cyano-4'-pentylbiphenyl microdroplet in water for actuating and sensing applications |
| title_full_unstemmed | Quantitative optical manipulation of a single 4-Cyano-4'-pentylbiphenyl microdroplet in water for actuating and sensing applications |
| title_short | Quantitative optical manipulation of a single 4-Cyano-4'-pentylbiphenyl microdroplet in water for actuating and sensing applications |
| title_sort | quantitative optical manipulation of a single 4 cyano 4 pentylbiphenyl microdroplet in water for actuating and sensing applications |
| topic | QC Physics |
| url | https://ir.upsi.edu.my/detailsg.php?det=11966 |
| work_keys_str_mv | AT muhamadsafuanmatyengmatzin quantitativeopticalmanipulationofasingle4cyano4pentylbiphenylmicrodropletinwaterforactuatingandsensingapplications |