Optical trapping and manipulation of microcrystalline cellulose microcluster (MCCM) for microtool applications
| Main Author: | |
|---|---|
| Format: | Thesis |
| Language: | English |
| Published: |
2024
|
| Subjects: | |
| Online Access: | https://ir.upsi.edu.my/detailsg.php?det=12267 |
| Abstract | Abstract here |
| _version_ | 1855626318216953856 |
|---|---|
| author | Wan Nor Suhaila Wan Aziz |
| author_facet | Wan Nor Suhaila Wan Aziz |
| author_sort | Wan Nor Suhaila Wan Aziz |
| description | |
| format | Thesis |
| id | upsi-12267 |
| institution | Universiti Pendidikan Sultan Idris |
| language | English |
| publishDate | 2024 |
| record_format | sWADAH |
| record_pdf | Restricted |
| spelling | upsi-122672025-06-19 Optical trapping and manipulation of microcrystalline cellulose microcluster (MCCM) for microtool applications 2024 Wan Nor Suhaila Wan Aziz QC Physics <p>This research endeavours to employ optical trapping technique for manipulating a single</p><p>microcrystalline cellulose microcluster (MCCM) in solution. The viscosity of low</p><p>concentration microcrystalline cellulose (MCCM) solutions was assessed to identify optimal</p><p>concentrations for optical tweezer applications. These solutions were prepared via the</p><p>sonication method, and their viscosity was measured using a rheometer. Utilizing optical</p><p>microscopy, MCCM formation was observed to determine suitable size ranges for optical</p><p>trapping. A single MCCM was successfully trapped using a 976nm linearly polarized laser with</p><p>a numerical aperture of 1.4, whist manipulation was achieved employing a circularly polarized</p><p>laser. The translation motion of the MCCM was facilitated by a piezostage system. Trajectories</p><p>of the MCCM were analyzed through visual observation via a CCD camera and scattering light</p><p>detection with a quadrant photodiode (QPD). The findings indicated that solutions with</p><p>concentrations below 1% w/w were optimal for optical trapping. MCCM ranging from 0.5 _m</p><p>to 4.0 _m were effectively trapped within a laser power density range of 0.6 MW/cm2 to</p><p>2.2 MW/cm2, with the additional capability of rotation using the circularly polarized laser.</p><p>In conclusion, this research demonstrates the feasibility of employing optical techniques, in</p><p>conjunction with a piezostage, to achieve simultaneous linear translation and rotational motion</p><p>of a single microcrystalline cellulose microcluster. This research implies that a single cellulose</p><p>microcluster and fibrous microparticle, such as MCCM, can be optically micro-controlled for</p><p>microtool applications.</p> 2024 thesis https://ir.upsi.edu.my/detailsg.php?det=12267 https://ir.upsi.edu.my/detailsg.php?det=12267 text eng N/A openAccess Doctoral Perpustakaan Tuanku Bainun Fakulti Sains dan Matematik <p>Abbasi Moud, A. (2022). Cellulose through the Lens of Microfluidics: A Review.</p><p>Applied Biosciences, 1(1), 1-37.</p><p></p><p>Abe, K., Kotera, K., Suzuki, K., & Citterio, D. (2010). Inkjet-printed paperfluidic</p><p>immuno-chemical sensing device. Analytical and Bioanalytical Chemistry,</p><p>398(2), 885-893.</p><p></p><p>Abe, K., Suzuki, K., & Citterio, D. (2008). Inkjet-Printed Microfluidic Multianalyte</p><p>Chemical Sensing Paper. Analytical Chemistry, 80(18), 6928-6934.</p><p></p><p>Aekbote, B. L., Fekete, T., Jacak, J., Vizsnyiczai, G., Ormos, P., & Kelemen, L. (2016).</p><p>Surface-modified complex SU-8 microstructures for indirect optical</p><p>manipulation of single cells. Biomedical Optics Express, 7(1), 45.</p><p></p><p>Agayan, R. R., Horvath, T., McNaughton, B. H., Anker, J. N., & Kopelman, R. (2004).</p><p>Optical manipulation of metal-silica hybrid nanoparticles. In Optical Trapping</p><p>and Optical Micromanipulation (Vol. 5514, pp. 502-513). SPIE.</p><p></p><p>Ahn, J., Xu, Z., Bang, J., Ju, P., Gao, X., & Li, T. (2020). Ultrasensitive torque</p><p>detection with an optically levitated nanorotor. Nature Nanotechnology, 15(2),</p><p>89-93.</p><p></p><p>Amblard, F., Yurke, B., Pargellis, A., & Leibler, S. (1996). A magnetic manipulator</p><p>for studying local rheology and micromechanical properties of biological</p><p>systems. Review of Scientific Instruments, 67(3), 818-827.</p><p></p><p>Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure.</p><p>Physical Review Letters, 24(4), 156-159.</p><p></p><p>Ashkin, A. (1992). Forces of a single-beam gradient laser trap on a dielectric sphere</p><p>in the ray optics regime. Biophysical Journal, 61(2), 569-582.</p><p></p><p>Ashkin, A. (1997). Optical trapping and manipulation of neutral particles using lasers.</p><p>Proceedings of the National Academy of Sciences of the United States of</p><p>America.</p><p></p><p>Ashkin, A., & Dziedzic, J. M. (1987). Optical trapping and manipulation of viruses</p><p>and bacteria. Science (New York, N.Y.), 235, 1517-1520.</p><p></p><p>Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., & Chu, S. (1986). Observation of a</p><p>single-beam gradient force optical trap for dielectric particles. Optics Letters,</p><p>11(5), 288.</p><p></p><p>Ashkin, A., Dziedzic, J. M., & Yamane, T. (1987). Optical trapping and manipulation</p><p>of single cells using infrared laser beams. Nature, 330(6150), 769-771.</p><p></p><p>Bai, W., & Li, K. (2009). Partial replacement of silica with microcrystalline cellulose</p><p>in rubber composites. Composites Part A. Applied Science and Manufacturing,</p><p>40(10), 1597-1605.</p><p></p><p>Barbot, A., Decanini, D., & Hwang, G. (2016). On-chip Microfluidic Multimodal</p><p>Swimmer toward 3D Navigation. Scientific Reports, 6(1), 19041.</p><p></p><p>Barrulas, R. V., & Corvo, M. C. (2023). Rheology in Product Development: An Insight</p><p>into 3D Printing of Hydrogels and Aerogels. Gels, 9(12), 986.</p><p></p><p>Bente, K., Codutti, A., Bachmann, F., & Faivre, D. (2018). Biohybrid and Bioinspired</p><p>Magnetic Microswimmers. Small, 14(29), 1704374.</p><p></p><p>Berg-Sorensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical</p><p>tweezers. Review of Scientific Instruments, 75(3), 594-612.</p><p></p><p>Berg-Sorensen, K., Peterman, E. J. G., Weber, T., Schmidt, C. F., & Flyvbjerg, H.</p><p>(2006). Power spectrum analysis for optical tweezers. II: Laser wavelength</p><p>dependence of parasitic filtering, and how to achieve high bandwidth. Review of</p><p>Scientific Instruments, 77(6).</p><p></p><p>Binnig, G., Garcia, N., & Rohrer, H. (1985). Conductivity sensitivity of inelastic</p><p>scanning tunneling microscopy. Physical Review B, 32, 1336-1338.</p><p></p><p>Binnig, G., Quate, C., & Gerber, C. (1986). Atomic force microscope. Physical Review</p><p>Letters, 56, 930-933.</p><p></p><p>Blazquez-Castro, A. (2019). Optical Tweezers: Phototoxicity and Thermal Stress in</p><p>Cells and Biomolecules. Micromachines, 10(8), 507.</p><p></p><p>Bohm, C. F., Feldner, P., Merle, B., & Wolf, S. E. (2019). Conical Nanoindentation</p><p>Allows Azimuthally Independent Hardness Determination in Geological and</p><p>Biogenic Minerals. Materials, 12(10), 1630.</p><p></p><p>Boran, S., Kiziltas, A., Kiziltas, E. E., & Gardner, D. J. (2016). The Comparative Study</p><p>of Different Mixing Methods for Microcrystalline Cellulose/Polyethylene</p><p>Composites. International Polymer Processing, 31(1), 92-103.</p><p></p><p>Bruce, G. D., Rodriguez-Sevilla, P., & Dholakia, K. (2021). Initiating revolutions for</p><p>optical manipulation: the origins and applications of rotational dynamics of</p><p>trapped particles. Advances in Physics: X, 6(1).</p><p></p><p>Bruzewicz, D. A., Reches, M., & Whitesides, G. M. (2008). Low-Cost Printing of</p><p>Poly(dimethylsiloxane) Barriers to Define Microchannels in Paper. Analytical</p><p>Chemistry, 80(9), 3387-3392.</p><p></p><p>Bunea, A., & Gluckstad, J. (2019). Strategies for Optical Trapping in Biological</p><p>Samples: Aiming at Microrobotic Surgeons. Laser & Photonics Reviews, 13(4),</p><p>1800227.</p><p></p><p>Buosciolo, A., Pesce, G., & Sasso, A. (2004). New calibration method for position</p><p>detector for simultaneous measurements of force constants and local viscosity in</p><p>optical tweezers. Optics Communications, 230(4-6), 357-368.</p><p></p><p>Bustamante, C. J., Chemla, Y. R., Liu, S., & Wang, M. D. (2021). Optical tweezers in</p><p>single-molecule biophysics. Nature Reviews Methods Primers, 1(1), 25.</p><p></p><p>Butaite, U. G., Gibson, G. M., Ho, Y.-L. D., Taverne, M., Taylor, J. M., & Phillips, D.</p><p>B. (2019). Indirect optical trapping using light driven micro-rotors for</p><p>reconfigurable hydrodynamic manipulation. Nature Communications, 10(1),</p><p>1215.</p><p></p><p>Carrick, C., Larsson, P. A., Brismar, H., Aidun, C., & Wagberg, L. (2014). Native and</p><p>functionalized micrometre-sized cellulose capsules prepared by microfluidic</p><p>flow focusing. RSC Adv., 4(37), 19061-19067.</p><p></p><p>Cataldi, A., Dorigato, A., Deflorian, F., & Pegoretti, A. (2014). Thermo-mechanical</p><p>properties of innovative microcrystalline cellulose filled composites for art</p><p>protection and restoration. Journal of Materials Science, 49(5), 2035-2044.</p><p></p><p>Chang, D. E., Sorensen, A. S., Hemmer, P. R., & Lukin, M. D. (2006). Quantum Optics</p><p>with Surface Plasmons. Physical Review Letters, 97(5), 053002.</p><p></p><p>Charvin, G., Strick, T. R., Bensimon, D., & Croquette, V. (2005). Tracking</p><p>topoisomerase activity at the single-molecule level. Annual Review of</p><p>Biophysics and Biomolecular Structure, 34, 201-219.</p><p></p><p>Chen, H., Chandrasekar, S., Sheetz, M. P., Stossel, T. P., Nakamura, F., & Yan, J.</p><p>(2013). Mechanical perturbation of filamin A immunoglobulin repeats 20-21</p><p>reveals potential non-equilibrium mechanochemical partner binding function.</p><p>Scientific Reports, 3(1), 1642.</p><p></p><p>Chen, H., & Sun, D. (2012). Moving Groups of Microparticles into Array with a</p><p>Robot-Tweezers Manipulation System. IEEE Transactions on Robotics, 28(5),</p><p>1069-1080.</p><p></p><p>Chen, J., Yan, S., & Ruan, J. (1996). A study on the preparation, structure, and</p><p>properties of microcrystalline cellulose. Journal of Macromolecular Science -</p><p>Pure and Applied Chemistry, 33(12), 1851-1862.</p><p></p><p>Cheng, Z., Mason, T. G., & Chaikin, P. M. (2003). Periodic oscillation of a colloidal</p><p>disk near a wall in an optical trap. Physical Review E, 68(5), 051404.</p><p></p><p>Chinnam, J., Das, D. K., Vajjha, R. S., & Satti, J. R. (2015). Measurements of the</p><p>surface tension of nanofluids and development of a new correlation. International</p><p>Journal of Thermal Sciences, 98, 68-80.</p><p></p><p>Chitnis, G., Ding, Z., Chang, C.-L., Savran, C. A., & Ziaie, B. (2011). Laser-treated</p><p>hydrophobic paper: an inexpensive microfluidic platform. Lab on a Chip, 11(6),</p><p>1161.</p><p></p><p>Choe, D., Kim, Y. M., Nam, J. E., Nam, K., Shin, C. S., & Roh, Y. H. (2018). Synthesis</p><p>of high-strength microcrystalline cellulose hydrogel by viscosity adjustment.</p><p>Carbohydrate Polymers, 180, 231-237.</p><p></p><p>Chowdhury, S., Thakur, A., Svec, P., Wang, C., Losert, W., & Gupta, S. K. (2014).</p><p>Automated Manipulation of Biological Cells Using Gripper Formations</p><p>Controlled by Optical Tweezers. IEEE Transactions on Automation Science and</p><p>Engineering, 11(2), 338-347.</p><p></p><p>Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A., & Ashkin, A. (1985). Threedimensional</p><p>viscous confinement and cooling of atoms by resonance radiation</p><p>pressure. Physical Review Letters, 55, 48-51.</p><p></p><p>Chung, Y.-C., Chen, P.-W., Fu, C.-M., & Wu, J.-M. (2013). Particles sorting in microchannel</p><p>system utilizing magnetic tweezers and optical tweezers. Journal of</p><p>Magnetism and Magnetic Materials, 333, 87-92.</p><p></p><p>Coffey, W. T., & Kalmykov, Y. P. (2012). The Langevin Equation (Vol. 27). World</p><p>Scientific.</p><p></p><p>Crozier, K. B. (2024). Plasmonic Nanotweezers: What's Next? ACS Photonics, 11(2),</p><p>321-333.</p><p></p><p>De Vlaminck, I., & Dekker, C. (2012). Recent Advances in Magnetic Tweezers. Annual</p><p>Review of Biophysics, 41(1), 453-472.</p><p></p><p>Dholakia, K., Spalding, G., & MacDonald, M. (2002). Optical tweezers: the next</p><p>generation. Physics World, 15(10), 31.</p><p></p><p>Dols-Perez, A., Marin, V., Amador, G. J., Kieffer, R., Tam, D., & Aubin-Tam, M.-E.</p><p>(2019). Artificial Cell Membranes Interfaced with Optical Tweezers: A Versatile</p><p>Microfluidics Platform for Nanomanipulation and Mechanical</p><p>Characterization. ACS applied materials & interfaces, 11(37), 33620-33627.</p><p></p><p>Donato, M. G., Messina, E., Foti, A., Smart, T. J., Jones, P. H., Iati, M. A., Saija, R.,</p><p>Gucciardi, P. G., & Marago, O. M. (2018). Optical trapping and optical force</p><p>positioning of two-dimensional materials. Nanoscale, 10(3), 1245-1255.</p><p></p><p>Douplik, A., Saiko, G., Schelkanova, I., & Tuchin, V. V. (2013). The response of tissue</p><p>to laser light. In Lasers for Medical Applications (pp. 47-109). Elsevier.</p><p></p><p>Dungchai, W., Chailapakul, O., & Henry, C. S. (2011). A low-cost, simple, and rapid</p><p>fabrication method for paper-based microfluidics using wax screen-printing.</p><p>The Analyst, 136(1), 77-82.</p><p></p><p>Ejikeme, P. M. (2008). Investigation of the physicochemical properties of</p><p>microcrystalline cellulose from agricultural wastes I: orange mesocarp.</p><p>Cellulose, 15(1), 141-147.</p><p></p><p>Elsakhawy, M., & Hassan, M. (2007). Physical and mechanical properties of</p><p>microcrystalline cellulose prepared from agricultural residues. Carbohydrate</p><p>Polymers, 67(1), 1-10.</p><p></p><p>Favre-Bulle, I. A., Stilgoe, A. B., Scott, E. K., & Rubinsztein-Dunlop, H. (2019).</p><p>Optical trapping in vivo: theory, practice, and applications. Nanophotonics,</p><p>8(6), 1023-1040.</p><p></p><p>Fenton, E. M., Mascarenas, M. R., Lopez, G. P., & Sibbett, S. S. (2009). Multiplex</p><p>Lateral-Flow Test Strips Fabricated by Two-Dimensional Shaping. ACS</p><p>Applied Materials & Interfaces, 1(1), 124-129.</p><p></p><p>Friese, M. E. J., Enger, J., Rubinsztein-Dunlop, H., & Heckenberg, N. R. (1996).</p><p>Optical angular-momentum transfer to trapped absorbing particles. Physical</p><p>Review A, 54(2), 1593-1596.</p><p></p><p>Friese, M. E. J., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H.</p><p>(1998). Optical alignment and spinning of laser-trapped microscopic particles.</p><p>Nature, 394(6691), 348-350.</p><p></p><p>Friese, M. E. J., Rubinsztein-Dunlop, H., Gold, J., Hagberg, P., & Hanstorp, D. (2001).</p><p>Optically driven micromachine elements. Applied Physics Letters, 78(4), 547-</p><p>549.</p><p></p><p>Geonzon, L. C., Kobayashi, M., Sugimoto, T., & Adachi, Y. (2022). Study on the</p><p>kinetics of adsorption of poly(ethylene oxide) onto a silica particle using optical</p><p>tweezers and microfluidics. Colloids and Surfaces A. Physicochemical and</p><p>Engineering Aspects, 642, 128691.</p><p></p><p>Ghasemi, S., Rahimzadeh-Bajgiran, P., Tajvidi, M., & Shaler, S. M. (2020).</p><p>Birefringence-based orientation mapping of cellulose nanofibrils in thin films.</p><p>Cellulose, 27(2), 677-692.</p><p></p><p>Gomez Hoyos, C., Cristia, E., & Vazquez, A. (2013). Effect of cellulose</p><p>microcrystalline particles on properties of cement based composites. Materials</p><p>and Design, 51, 810-818.</p><p></p><p>Gore, J., Bryant, Z., Stone, M. D., Nollmann, M., Cozzarelli, N. R., & Bustamante, C.</p><p>(2006). Mechanochemical analysis of DNA gyrase using rotor bead tracking.</p><p>Nature, 439(7072), 100-104.</p><p></p><p>Hamid, M. Y., & Ayop, S. K. (2018). LabVIEW-Based Software for Optical Stiffness</p><p>Determination Using Boltzmann Statistics, Equipartition Theorem and Power</p><p>Spectral Density Methods. Advanced Science Letters, 24(3), 1856-1860.</p><p></p><p>Han, X., & Sun, C. (2019). Plasmonic Tweezers towards Biomolecular and Biomedical</p><p>Applications. Applied Sciences, 9(17), 3596.</p><p></p><p>Hernandez Candia, C. N., Tafoya Martinez, S., & Gutierrez-Medina, B. (2013). A</p><p>Minimal Optical Trapping and Imaging Microscopy System. PLoS ONE, 8(2),</p><p>e57383.</p><p></p><p>Herranen, J., Markkanen, J., Videen, G., & Muinonen, K. (2019). Non-spherical</p><p>particles in optical tweezers: A numerical solution. PLOS ONE, 14(12),</p><p>e0225773.</p><p></p><p>Higurashi, E., Sawada, R., & Ito, T. (1998). Optically induced angular alignment of</p><p>birefringent micro-objects by linear polarization. Applied Physics Letters,</p><p>73(21), 3034-3036.</p><p></p><p>Hochstetter, A., & Pfohl, T. (2016). Motility, Force Generation, and Energy</p><p>Consumption of Unicellular Parasites. Trends in Parasitology, 32(7), 531-541.</p><p></p><p>Hou, X., & Cheng, W. (2013). Optical Tweezers. In Encyclopedia of Biophysics.</p><p>Springer Berlin Heidelberg 1800-1807.</p><p></p><p>Hu, S., Chen, S., Chen, S., Xu, G., & Sun, D. (2017). Automated Transportation of</p><p>Multiple Cell Types Using a Robot-Aided Cell Manipulation System with</p><p>Holographic Optical Tweezers. IEEE/ASME Transactions on Mechatronics,</p><p>22(2), 804-814.</p><p></p><p>Hu, S., Xie, H., Wei, T., Chen, S., & Sun, D. (2019). Automated Indirect</p><p>Transportation of Biological Cells with Optical Tweezers and a 3D Printed</p><p>Microtool. Applied Sciences, 9(14), 2883.</p><p></p><p>Irrera, A., Artoni, P., Saija, R., Gucciardi, P. G., Iati, M. A., Borghese, F., Denti, P.,</p><p>Iacona, F., Priolo, F., & Marago, O. M. (2011). Size-Scaling in Optical Trapping</p><p>of Silicon Nanowires. Nano Letters, 11(11), 4879-4884.</p><p></p><p>Irrera, A., Magazzu, A., Artoni, P., Simpson, S. H., Hanna, S., Jones, P. H., Priolo, F.,</p><p>Gucciardi, P. G., & Marago, O. M. (2016). Photonic Torque Microscopy of the</p><p>Nonconservative Force Field for Optically Trapped Silicon Nanowires. Nano</p><p>Letters, 16(7), 4181-4188.</p><p></p><p>Kamata, H., Akagi, Y., Kayasuga-Kariya, Y., Chung, U. Il, & Sakai, T. (2014).</p><p>"Nonswellable" hydrogel without mechanical hysteresis. Science, 343(6173),</p><p>873-875.</p><p></p><p>Kampmann, R., Sinzinger, S., & Korvink, J. G. (2018). Optical tweezers for trapping</p><p>in a microfluidic environment. Applied Optics, 57(20), 5733.</p><p></p><p>Kaufman, G., Jimenez, J., Bradshaw, A., Radecka, A., Gallegos, M., Kaehr, B., &</p><p>Golecki, H. (2023). A Stiff-Soft Composite Fabrication Strategy for Fiber Optic</p><p>Tethered Microtools. Advanced Materials Technologies, 8(12).</p><p></p><p>Keloth, A., Anderson, O., Risbridger, D., & Paterson, L. (2018). Single Cell Isolation</p><p>Using Optical Tweezers. Micromachines 2018, Vol. 9, Page 434, 9(9), 434.</p><p></p><p>Kim, J. Y., Yeom, J., Zhao, G., Calcaterra, H., Munn, J., Zhang, P., & Kotov, N. (2019).</p><p>Assembly of Gold Nanoparticles into Chiral Superstructures Driven by</p><p>Circularly Polarized Light. Journal of the American Chemical Society, 141(30),</p><p>11739-11744.</p><p></p><p>Kim, J.-K. (1993). Composite applications: The role of matrix, fiber and interface.</p><p>Advanced Materials ISBN 3-527-28094-4, 407.</p><p></p><p>Kiziltas, A., Gardner, D. J., Han, Y., & Yang, H. S. (2014). Mechanical Properties of</p><p>Microcrystalline Cellulose (MCC) Filled Engineering Thermoplastic</p><p>Composites. Journal of Polymers and the Environment, 22(3), 365-372.</p><p></p><p>Klasner, S. A., Price, A. K., Hoeman, K. W., Wilson, R. S., Bell, K. J., & Culbertson,</p><p>C. T. (2010). Paper-based microfluidic devices for analysis of clinically relevant</p><p>analytes present in urine and saliva. Analytical and Bioanalytical Chemistry,</p><p>397(5), 1821-1829.</p><p></p><p>Kotnala, A., Kollipara, P. S., & Zheng, Y. (2020). Opto-thermoelectric speckle</p><p>tweezers. Nanophotonics, 9(4), 927-933.</p><p></p><p>Kumar, P. T., Decrop, D., Safdar, S., Passaris, I., Kokalj, T., Puers, R., Aertsen, A.,</p><p>Spasic, D., & Lammertyn, J. (2020). Digital Microfluidics for Single Bacteria</p><p>Capture and Selective Retrieval Using Optical Tweezers. Micromachines 2020,</p><p>Vol. 11, Page 308, 11(3), 308.</p><p></p><p>Leach, J., Mushfique, H., Di Leonardo, R., Padgett, M., & Cooper, J. (2006). An</p><p>optically driven pump for microfluidics. Lab on a Chip, 6(6), 735-739.</p><p></p><p>Lee, G. U., Chrisey, L. A., & Colton, R. J. (1994). Direct measurement of the forces</p><p>between complementary strands of DNA. Science (New York, N.Y.), 266, 771-</p><p>773.</p><p></p><p>Leung, V., Shehata, A.-A. M., Filipe, C. D. M., & Pelton, R. (2010). Streaming</p><p>potential sensing in paper-based microfluidic channels. Colloids and Surfaces</p><p>A. Physicochemical and Engineering Aspects, 364(1-3), 16-18.</p><p></p><p>Li, J., Alfares, A., & Zheng, Y. (2022). Optical manipulation and assembly of</p><p>micro/nanoscale objects on solid substrates. IScience, 25(4), 104035.</p><p></p><p>Li, M., Yan, S., Yao, B., Liang, Y., Han, G., & Zhang, P. (2016). Optical trapping</p><p>force and torque on spheroidal Rayleigh particles with arbitrary spatial</p><p>orientations. Journal of the Optical Society of America A, 33(7), 1341.</p><p></p><p>Li, X., & Cheah, C. C. (2016). Tracking Control for Optical Manipulation with</p><p>Adaptation of Trapping Stiffness. IEEE Transactions on Control Systems</p><p>Technology, 24(4), 1432-1440.</p><p></p><p>Li, X., Tian, J., & Shen, W. (2010). Progress in patterned paper sizing for fabrication</p><p>of paper-based microfluidic sensors. Cellulose, 17(3), 649-659.</p><p></p><p>Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, L., Hu, H., Dong, L., Wei,</p><p>F., Choi, Y., & Gao, J. (2020). Oscar: Object-Semantics Aligned Pre-training</p><p>for Vision-Language Tasks. In Computer Vision-ECCV, Springer International</p><p>Publishing, 16, 121-137.</p><p></p><p>Lin, C.-L., Lee, Y.-H., Lin, C.-T., Liu, Y.-J., Hwang, J.-L., Chung, T.-T., & Baldeck,</p><p>P. L. (2011). Multiplying optical tweezers force using a micro-lever. Optics</p><p>Express, 19(21), 20604.</p><p></p><p>Lin, L., Hill, E. H., Peng, X., & Zheng, Y. (2018). Optothermal Manipulations of</p><p>Colloidal Particles and Living Cells. Accounts of Chemical Research, 51(6),</p><p>1465-1474.</p><p></p><p>Lin, X., Xie, W., Lin, Q., Cai, Y., Hua, Y., Lin, J., He, G., & Chen, J. (2021). NIRresponsive</p><p>metal-containing polymer hydrogel for light-controlled microvalve.</p><p>Polymer Chemistry, 12(23), 3375-3382.</p><p></p><p>Liu, L., Yang, J.-P., Ju, X.-J., Xie, R., Yang, L., Liang, B., & Chu, L.-Y. (2009).</p><p>Microfluidic preparation of monodisperse ethyl cellulose hollow microcapsules</p><p>with non-toxic solvent. Journal of Colloid and Interface Science, 336(1), 100-</p><p>106.</p><p></p><p>Liu, W., Dong, D., Yang, H., Gong, Q., & Shi, K. (2020). Robust and high-speed</p><p>rotation control in optical tweezers by using polarization synthesis based on</p><p>heterodyne interference. Opto-Electronic Advances, 3(8), 200022-200022.</p><p></p><p>Lokesh, M., Vaippully, R., Bhallamudi, V. P., Prabhakar, A., & Roy, B. (2021).</p><p>Realization of pitch-rotational torque wrench in two-beam optical tweezers.</p><p>Journal of Physics Communications, 5(11), 115016.</p><p></p><p>Lu, Y., Shi, W., Jiang, L., Qin, J., & Lin, B. (2009). Rapid prototyping of paper-based</p><p>microfluidics with wax for low-cost, portable bioassay. Electrophoresis, 30(9),</p><p>1497-1500.</p><p></p><p>Magazzu, A., Spadaro, D., Donato, M. G., Sayed, R., Messina, E., D'Andrea, C., Foti,</p><p>A., Fazio, B., Iati, M. A., Irrera, A., Saija, R., Gucciardi, P. G., & Marago, O. M.</p><p>(2015). Optical tweezers: a non-destructive tool for soft and biomaterial</p><p>investigations. Rendiconti Lincei, 26(S2), 203-218.</p><p></p><p>Mahadi, N. I., Ayop, S. K., Mat Yeng, M. S., & Supian, F. L. (2022). Power Density</p><p>Limit for Stable Optical Trapping of a Single Microcluster of Calix[4]arene in</p><p>Water. Central Asian and the Caucasus, 23(2), 3000-3007.</p><p></p><p>Mahadi, N. I., Ayop, S. K., & Supian, F. L. (2022). The optical trapping of a single</p><p>Calix[4]arene microcluster in water. In T. Omatsu (Ed.), Optical Manipulation</p><p>and Structured Materials Conference, SPIE, 4.</p><p></p><p>Marago, O. M., Bonaccorso, F., Saija, R., Privitera, G., Gucciardi, P. G., Iati, M. A.,</p><p>Calogero, G., Jones, P. H., Borghese, F., Denti, P., Nicolosi, V., & Ferrari, A. C.</p><p>(2010). Brownian Motion of Graphene. ACS Nano, 4(12), 7515-7523.</p><p></p><p>Marago, O. M., Jones, P. H., Bonaccorso, F., Scardaci, V., Gucciardi, P. G., Rozhin,</p><p>A. G., & Ferrari, A. C. (2008). Femtonewton Force Sensing with Optically</p><p>Trapped Nanotubes. Nano Letters, 8(10), 3211-3216.</p><p></p><p>Martinez, A. W., Phillips, S. T., Butte, M. J., & Whitesides, G. M. (2007). Patterned</p><p>Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays.</p><p>Angewandte Chemie, 119(8), 1340-1342.</p><p></p><p>Martinez, A. W., Phillips, S. T., & Whitesides, G. M. (2008). Three-dimensional</p><p>microfluidic devices fabricated in layered paper and tape. Proceedings of the</p><p>National Academy of Sciences, 105(50), 19606-19611.</p><p></p><p>Martonfalvi, Z., Bianco, P., Naftz, K., Ferenczy, G. G., & Kellermayer, M. (2017).</p><p>Force generation by titin folding. Protein Science, 26(7), 1380-1390.</p><p></p><p>Maruo, S., Takaura, A., & Saito, Y. (2009). Optically driven micropump with a twin</p><p>spiral microrotor. Optics Express, 17(21), 18525.</p><p></p><p>Marzo, A., & Drinkwater, B. W. (2019). Holographic acoustic tweezers. Proceedings</p><p>of the National Academy of Sciences, 116(1), 84-89.</p><p></p><p>Masuda, A., Takao, H., Shimokawa, F., & Terao, K. (2021). On-site processing of</p><p>single chromosomal DNA molecules using optically driven microtools on a</p><p>microfluidic workbench. Scientific Reports, 11(1), 7961.</p><p></p><p>Mat Yeng, M. S., & Ayop, S. K. (2022). The trapping of a single 4-cyano-4-</p><p>pentylbiphenyl (5CB) microdroplet in water using optical tweezers. In Optical</p><p>Manipulation and Structured Materials Conference (OMC 2022), SPIE, 12479,</p><p>23-25.</p><p></p><p>Merci, A., Urbano, A., Grossmann, M. V. E., Tischer, C. A., & Mali, S. (2015).</p><p>Properties of microcrystalline cellulose extracted from soybean hulls by reactive</p><p>extrusion. Food Research International, 73, 38-43.</p><p></p><p>Meyer, A. R., & Gorin, M. A. (2019). First point-of-care PSA test for prostate cancer</p><p>detection. In Nature Reviews Urology, Nature Publishing Group, 16 (6), 332-</p><p>333.</p><p></p><p>Monschein, M., Reisinger, C., & Nidetzky, B. (2013). Enzymatic hydrolysis of</p><p>microcrystalline cellulose and pretreated wheat straw: A detailed comparison</p><p>using convenient kinetic analysis. Bioresource Technology, 128, 679-687.</p><p></p><p>Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J. (2011). Cellulose</p><p>nanomaterials review: structure, properties and nanocomposites. Chemical</p><p>Society Reviews, 40(7), 3941.</p><p></p><p>Munoz-Perez, F. M., Ortega-Mendoza, J. G., Padilla-Vivanco, A., Toxqui-Quitl, C.,</p><p>Sarabia-Alonso, J. A., & Ramos-Garcia, R. (2020). Steady-State 3D Trapping</p><p>and Manipulation of Microbubbles Using Thermocapillary. Frontiers in Physics,</p><p>8.</p><p></p><p>Nachman-Clewner, M., St. Jules, R., & Townes-Anderson, E. (1999). L-type calcium</p><p>channels in the photoreceptor ribbon synapse: Localization and role in</p><p>plasticity. The Journal of Comparative Neurology, 415(1), 1-16.</p><p></p><p>Nechyporchuk, O., Hakansson, K. M. O., Gowda.V, K., Lundell, F., Hagstrom, B., &</p><p>Kohnke, T. (2018). Continuous Assembly of Cellulose Nanofibrils and</p><p>Nanocrystals into Strong Macrofibers through Microfluidic Spinning. Advanced</p><p>Materials Technologies, 1800557.</p><p></p><p>Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical</p><p>tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5,</p><p>491-505.</p><p></p><p>Nieminen, T. A., Knoner, G., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (2007).</p><p>Physics of Optical Tweezers. In Methods in Cell Biology, 82, 207-236</p><p></p><p>Nieminen, T. A., Loke, V. L. Y., Stilgoe, A. B., Knoner, G., Branczyk, A. M.,</p><p>Heckenberg, N. R., & Rubinsztein-Dunlop, H. (2007). Optical tweezers</p><p>computational toolbox. Journal of Optics A: Pure and Applied Optics, 9(8),</p><p>S196-S203.</p><p></p><p>Norregaard, K., Metzler, R., Ritter, C. M., Berg-Sorensen, K., & Oddershede, L. B.</p><p>(2017). Manipulation and Motion of Organelles and Single Molecules in Living</p><p>Cells. Chemical Reviews, 117(5), 4342-4375.</p><p></p><p>Olkkonen, J., Lehtinen, K., & Erho, T. (2010). Flexographically Printed Fluidic</p><p>Structures in Paper. Analytical Chemistry, 82(24), 10246-10250.</p><p></p><p>O'Neil, A. T., & Padgett, M. J. (2002). Rotational control within optical tweezers by</p><p>use of a rotating aperture. Optics Letters, 27(9), 743.</p><p></p><p>Oroszi, L., Galajda, P., Kirei, H., Bottka, S., & Ormos, P. (2006). Direct Measurement</p><p>of Torque in an Optical Trap and Its Application to Double-Strand DNA.</p><p>Physical Review Letters, 97(5), 058301.</p><p></p><p>Osterman, N., Slapar, V., Boric, M., Stopar, D., Babic, D., & Poberaj, I. (2010). Active</p><p>laser tweezers microrheometry of microbial biofilms. In Optical Trapping and</p><p>Optical Micromanipulation VII, SPIE, 7762, 313-320.</p><p></p><p>Parker, R. M., Frka-Petesic, B., Guidetti, G., Kamita, G., Consani, G., Abell, C., &</p><p>Vignolini, S. (2016). Hierarchical Self-Assembly of Cellulose Nanocrystals in a</p><p>Confined Geometry. ACS Nano, 10(9), 8443-8449.</p><p></p><p>Paul, A., Padmapriya, P., & Natarajan, V. (2017). Diagnosis of malarial infection using</p><p>change in properties of optically trapped red blood cells. Biomedical Journal,</p><p>40(2), 101-105.</p><p></p><p>Peppas, N. A., Hilt, J. Z., Khademhosseini, A., & Langer, R. (2006). Hydrogels in</p><p>biology and medicine: From molecular principles to bionanotechnology. In</p><p>Advanced Materials (Vol. 18, Issue 11, pp. 1345-1360).</p><p></p><p>Pesce, G., Jones, P. H., Marago, O. M., & Volpe, G. (2020). Optical tweezers: theory</p><p>and practice. The European Physical Journal Plus, 135(12), 949.</p><p></p><p>Pfeifer, R. N. C., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H.</p><p>(2009). Erratum: Colloquium : Momentum of an electromagnetic wave in</p><p>dielectric media [Rev. Mod. Phys. 79, 1197 (2007)]. Reviews of Modern</p><p>Physics, 81(1), 443-443.</p><p></p><p>Phillips, W. D. (1998). Nobel Lecture: Laser cooling and trapping of neutral atoms.</p><p>Reviews of Modern Physics, 70(3), 721-741.</p><p></p><p>Polimeno, P., Magazzu, A., Iati, M. A., Patti, F., Saija, R., Esposti Boschi, C. D.,</p><p>Donato, M. G., Gucciardi, P. G., Jones, P. H., Volpe, G., & Marago, O. M.</p><p>(2018). Optical tweezers and their applications. Journal of Quantitative</p><p>Spectroscopy and Radiative Transfer, 218, 131-150.</p><p></p><p>Power, M., Thompson, A. J., Anastasova, S., & Yang, G.-Z. (2018). A Monolithic</p><p>Force-Sensitive 3D Microgripper Fabricated on the Tip of an Optical Fiber</p><p>Using 2-Photon Polymerization. Small, 14(16), 1703964.</p><p></p><p>Pralle, A., Prummer, M., Florin, E.-L., Stelzer, E. H. K., & Harber, J. K. H. (1999).</p><p>Three-dimensional high-resolution particle tracking for optical tweezers by</p><p>forward scattered light. Microscopy Research and Technique, 44(5), 378-386.</p><p></p><p>Qiao, C., Chen, G., Zhang, J., & Yao, J. (2016). Structure and rheological properties</p><p>of cellulose nanocrystals suspension. Food Hydrocolloids, 55, 19-25.</p><p></p><p>Rafiee, Z., & Keshavarz, V. (2015). Synthesis and characterization of</p><p>polyurethane/microcrystalline cellulose bionanocomposites. Progress in Organic</p><p>Coatings, 86, 190-193.</p><p></p><p>Rahman, M. S. S., Li, J., Mengu, D., Rivenson, Y., & Ozcan, A. (2021). Ensemble</p><p>learning of diffractive optical networks. Light: Science & Applications, 10(1),</p><p>14.</p><p></p><p>Rajeev, A., Deshpande, A. P., & Basavaraj, M. G. (2018). Rheology and</p><p>microstructure of concentrated microcrystalline cellulose (MCC)/1-allyl-3-</p><p>methylimidazolium chloride (AmimCl)/water mixtures. Soft Matter, 14(37),</p><p>7615-7624.</p><p></p><p>Redding, B., & Pan, Y.-L. (2015). Optical trap for both transparent and absorbing</p><p>particles in air using a single shaped laser beam. Optics Letters, 40(12), 2798.</p><p></p><p>Riccardi, M., & Martin, O. J. F. (2023). Electromagnetic Forces and Torques: From</p><p>Dielectrophoresis to Optical Tweezers. Chemical Reviews, 123(4), 1680-1711.</p><p></p><p>Riyanto, S., Ayop, S. K., & Aziz, W. N. S. W. (2015). The determination of complex</p><p>shear modulus of deionized water using kramer-kronig relation (KKR) method.</p><p>Jurnal Teknologi, 74(8), 49-54.</p><p></p><p>Robertson-Anderson, R. M. (2018). Optical Tweezers Microrheology: From the Basics</p><p>to Advanced Techniques and Applications. ACS Macro Letters, 7(8), 968-975.</p><p></p><p>Romero, C. M., & Beltran, A. (2012). Effect of temperature and concentration on the</p><p>viscosity of aqueous solutions of 3-aminopropanoic acid, 4-aminobutanoic acid,</p><p>5-aminopentanoic acid, 6-aminohexanoic acid. Revista Colombiana de Quimica,</p><p>41(1), 123-131. .</p><p></p><p>Rudraraju, V. S., & Wyandt, C. M. (2005). Rheological characterization of</p><p>Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a</p><p>controlled stress rheometer: part I. International Journal of Pharmaceutics,</p><p>292(1-2), 53-61.</p><p></p><p>Samadi, M., Alibeigloo, P., Aqhili, A., Khosravi, M. A., Saeidi, F., Vasini, S.,</p><p>Ghorbanzadeh, M., Darbari, S., & Moravvej-Farshi, M. K. (2022). Plasmonic</p><p>tweezers: Towards nanoscale manipulation. Optics and Lasers in Engineering,</p><p>154, 107001.</p><p></p><p>Sarkar, R., & Rybenkov, V. V. (2016). A Guide to Magnetic Tweezers and Their</p><p>Applications. Frontiers in Physics, 4.</p><p></p><p>Scott, S. M., & Ali, Z. (2021). Fabrication Methods for Microfluidic Devices: An</p><p>Overview. Micromachines 2021, Vol. 12, Page 319, 12(3), 319.</p><p></p><p>Seliktar, D. (2012). Designing cell-compatible hydrogels for biomedical applications.</p><p>In Science, American Association for the Advancement of Science, 336 (6085),</p><p>1124-1128.</p><p></p><p>Shahripul Azeman, N. S., Mat Nawi, M. N., & Yaacob, M. I. H. (2020). Development</p><p>and characterization of fluidic based dome-shaped pressure sensor using spiral</p><p>microchannel. Microsystem Technologies, 26(5), 1653-1660.</p><p></p><p>Shan, X., Wang, F., Wang, D., Wen, S., Chen, C., Di, X., Nie, P., Liao, J., Liu, Y.,</p><p>Ding, L., Reece, P. J., & Jin, D. (2021). Optical tweezers beyond refractive index</p><p>mismatch using highly doped upconversion nanoparticles. Nature</p><p>Nanotechnology, 16(5), 531-537.</p><p></p><p>Shi, Y., Song, Q., Toftul, I., Zhu, T., Yu, Y., Zhu, W., Tsai, D. P., Kivshar, Y., & Liu,</p><p>A. Q. (2022). Optical manipulation with metamaterial structures. Applied</p><p>Physics Reviews, 9(3).</p><p></p><p>Simmons, R. M., Finer, J. T., Chu, S., & Spudich, J. A. (1996). Quantitative</p><p>measurements of force and displacement using an optical trap. Biophysical</p><p>Journal, 70(4), 1813-1822.</p><p></p><p>Simpson, S. H. (2014). Inhomogeneous and anisotropic particles in optical traps:</p><p>Physical behaviour and applications. Journal of Quantitative Spectroscopy and</p><p>Radiative Transfer, 146, 81-99.</p><p></p><p>Simpson, S. H., & Hanna, S. (2010). First-order nonconservative motion of optically</p><p>trapped nonspherical particles. Physical Review E, 82(3), 031141.</p><p></p><p>Singh, V., Lin, P. T., Patel, N., Lin, H., Li, L., Zou, Y., Deng, F., Ni, C., Hu, J.,</p><p>Giammarco, J., Soliani, A. P., Zdyrko, B., Luzinov, I., Novak, S., Novak, J.,</p><p>achtel, P., Danto, S., Musgraves, J. D., Richardson, K., _ Agarwal, A. M.</p><p>(2014). Mid-infrared materials and devices on a Si platform for optical sensing.</p><p>Science and Technology of Advanced Materials, 15(1), 014603.</p><p></p><p>Sleep, J., Wilson, D., Simmons, R., & Gratzer, W. (1999). Elasticity of the red cell</p><p>membrane and its relation to hemolytic disorders: An optical tweezers study.</p><p>Biophysical Journal, 77(6), 3085-3095.</p><p></p><p>Smith, A. V., Do, B. T., Hadley, G. R., & Farrow, R. L. (2009). Optical Damage Limits</p><p>to Pulse Energy From Fibers. IEEE Journal of Selected Topics in Quantum</p><p>Electronics, 15(1), 153-158.</p><p></p><p>Song, J., Babayekhorasani, F., & Spicer, P. T. (2019). Soft Bacterial Cellulose</p><p>Microcapsules with Adaptable Shapes. Biomacromolecules, 20(12), 4437-4446.</p><p></p><p>Spesyvtseva, S. E. S., & Dholakia, K. (2016). Trapping in a Material World. ACS</p><p>Photonics, 3(5), 719-736.</p><p></p><p>Strick, T., Allemand, J. F., Croquette, V., & Bensimon, D. (2000). Twisting and</p><p>stretching single DNA molecules. In Progress in Biophysics and Molecular</p><p>Biology (Vol. 74, pp. 115-140).</p><p></p><p>Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A., & Croquette, V. (1996).</p><p>The elasticity of a single supercoiled DNA molecule. Science (New York, N.Y.),</p><p>271, 1835-1837.</p><p></p><p>Strong, E. B., Schultz, S. A., Martinez, A. W., & Martinez, N. W. (2019). Fabrication</p><p>of Miniaturized Paper-Based Microfluidic Devices (MicroPADs). Scientific</p><p>Reports, 9(1), 7.</p><p></p><p>Sun, C.-K., Huang, Y.-C., Cheng, P. C., Liu, H.-C., & Lin, B.-L. (2001). Cell</p><p>manipulation by use of diamond microparticles as handles of optical tweezers.</p><p>Journal of the Optical Society of America B, 18(10), 1483.</p><p></p><p>Sun, J. Y., Zhao, X., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney, D. J.,</p><p>Vlassak, J. J., & Suo, Z. (2012). Highly stretchable and tough hydrogels. Nature,</p><p>489(7414), 133-136.</p><p></p><p>Szymanska-Chargot, M., Ciesla, J., Chylinska, M., Gdula, K., Pieczywek, P. M.,</p><p>Koziol, A., Cieslak, K. J., & Zdunek, A. (2018). Effect of ultrasonication on</p><p>physicochemical properties of apple based nanocellulose-calcium carbonate</p><p>composites. Cellulose, 25(8), 4603-4621.</p><p></p><p>Tassieri, M., Giudice, F. Del, Robertson, E. J., Jain, N., Fries, B., Wilson, R., Glidle,</p><p>A., Greco, F., Netti, P. A., Maffettone, P. L., Bicanic, T., & Cooper, J. M. (2015).</p><p>Microrheology with Optical Tweezers: Measuring the relative viscosity of</p><p>solutions 'at a glance.' Scientific Reports, 5, 8831.</p><p></p><p>Tassieri, M., Laurati, M., Curtis, D. J., Auhl, D. W., Coppola, S., Scalfati, A., Hawkins,</p><p>K., Williams, P. R., & Cooper, J. M. (2016). i-Rheo: Measuring the materials'</p><p>linear viscoelastic properties "in a step"!. Journal of Rheology, 60(4), 649-660.</p><p></p><p>Terray, A., Oakey, J., & Marr, D. W. M. (2002). Microfluidic Control Using Colloidal</p><p>Devices. Science, 296(5574), 1841-1844.</p><p></p><p>Toe, W. J., Ortega-Piwonka, I., Angstmann, C. N., Gao, Q., Tan, H. H., Jagadish, C.,</p><p>Henry, B. I., & Reece, P. J. (2016). Nonconservative dynamics of optically</p><p>trapped high-aspect-ratio nanowires. Physical Review E, 93(2), 022137.</p><p></p><p>Tolic-Norrelykke, S. F., Schaffer, E., Howard, J., Pavone, F. S., Julicher, F., &</p><p>Flyvbjerg, H. (2006). Calibration of optical tweezers with positional detection in</p><p>the back focal plane. Review of Scientific Instruments, 77(10).</p><p></p><p>Trache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F.</p><p>A., Hassan, T. M., & Haafiz, M. K. M. (2016). Microcrystalline cellulose:</p><p>Isolation, characterization and bio-composites application-A review. In</p><p>International Journal of Biological Macromolecules (Vol. 93, pp. 789-804).</p><p></p><p>Turlier, H., Fedosov, D. A., Audoly, B., Auth, T., Gov, N. S., Sykes, C., Joanny, J.-F.,</p><p>Gompper, G., & Betz, T. (2016). Equilibrium physics breakdown reveals the</p><p>active nature of red blood cell flickering. Nature Physics, 12(5), 513-519.</p><p></p><p>Uetani, K., Koga, H., & Nogi, M. (2019). Estimation of the Intrinsic Birefringence of</p><p>Cellulose Using Bacterial Cellulose Nanofiber Films. ACS Macro Letters, 8(3),</p><p>250-254.</p><p></p><p>Vizsnyiczai, G., Buzas, A., Lakshmanrao Aekbote, B., Fekete, T., Grexa, I., Ormos,</p><p>P., & Kelemen, L. (2020). Multiview microscopy of single cells through</p><p>microstructure-based indirect optical manipulation. Biomedical Optics Express,</p><p>11(2), 945.</p><p></p><p>Vizsnyiczai, G., Lestyan, T., Joniova, J., Aekbote, B. L., Strejckova, A., Ormos, P.,</p><p>Miskovsky, P., Kelemen, L., & Bano, G. (2015). Optically Trapped Surface-</p><p>Enhanced Raman Probes Prepared by Silver Photoreduction to 3D</p><p>Microstructures. Langmuir, 31(36), 10087-10093.</p><p></p><p>Wang, W., Wu, W.-Y., Wang, W., & Zhu, J.-J. (2010). Tree-shaped paper strip for</p><p>semiquantitative colorimetric detection of protein with self-calibration. Journal</p><p>of Chromatography A, 1217(24), 3896-3899.</p><p></p><p>Wasserman, M. R., & Liu, S. (2019). A Tour de Force on the Double Helix: Exploiting</p><p>DNA Mechanics To Study DNA-Based Molecular Machines. Biochemistry,</p><p>58(47), 4667-4676.</p><p></p><p>Watanabe, A., Morita, S., & Ozaki, Y. (2006). Temperature-dependent structural</p><p>changes in hydrogen bonds in microcrystalline cellulose studied by infrared and</p><p>near-infrared spectroscopy with perturbation-correlation moving-window twodimensional</p><p>correlation analysis. Applied Spectroscopy, 60(6), 611-618.</p><p></p><p>Wen-Cheng, X., Wei-Cheng, C., Ai-Ping, L., Qi, G., & Song-Hao, L. (2001).</p><p>Enhanced Pulse Compression Induced by Third-Order Dispersion in</p><p>Birefringent Fibre. Chinese Physics Letters, 18(9), 1211-1213.</p><p></p><p>Whitley, K. D., Comstock, M. J., & Chemla, Y. R. (2017). High-Resolution Optical</p><p>Tweezers Combined with Single-Molecule Confocal Microscopy. In Methods in</p><p>enzymology, Academic Press, 582, 137-169.</p><p></p><p>Wu, J. (1991). Acoustical tweezers. The Journal of the Acoustical Society of America,</p><p>89(5), 2140-2143.</p><p></p><p>Wu, Y., Sun, D., Huang, W., & Xi, N. (2013). Dynamics Analysis and Motion Planning</p><p>for Automated Cell Transportation with Optical Tweezers. IEEE/ASME</p><p>Transactions on Mechatronics, 18(2), 706-713.</p><p></p><p>Xie, M., Wang, Y., Feng, G., & Sun, D. (2015). Automated Pairing Manipulation of</p><p>Biological Cells with a Robot-Tweezers Manipulation System. IEEE/ASME</p><p>Transactions on Mechatronics, 20(5), 2242-2251.</p><p></p><p>Yan, Z., & Scherer, N. F. (2013). Optical vortex induced rotation of silver nanowires.</p><p>Journal of Physical Chemistry Letters, 4(17), 2937-2942.</p><p></p><p>Yang, H., Jussila, H., Autere, A., Komsa, H.-P., Ye, G., Chen, X., Hasan, T., & Sun,</p><p>Z. (2017). Optical Waveplates Based on Birefringence of Anisotropic Two-</p><p>Dimensional Layered Materials. ACS Photonics, 4(12), 3023-3030.</p><p></p><p>Yohana Chaerunisaa, A., Sriwidodo, S., & Abdassah, M. (2020). Microcrystalline</p><p>Cellulose as Pharmaceutical Excipient. In Pharmaceutical Formulation Design</p><p>- Recent Practices. IntechOpen.</p><p></p><p>Zhang, H., & Liu, K.-K. (2008). Optical tweezers for single cells. Journal of The Royal</p><p>Society Interface, 5(24), 671-690.</p><p></p><p>Zhang, Y., Chou, J. B., Li, J., Li, H., Du, Q., Yadav, A., Zhou, S., Shalaginov, M. Y.,</p><p>Fang, Z., Zhong, H., Roberts, C., Robinson, P., Bohlin, B., Rios, C., Lin, H.,</p><p>Kang, M., Gu, T., arner, J., Liberman, V., _ Hu, J. (2019). Broadband</p><p>transparent optical phase change materials for high-performance nonvolatile</p><p>photonics. Nature Communications, 10(1), 4279.</p><p></p><p>Zhang, Z., Kimkes, T. E. P., & Heinemann, M. (2019). Manipulating rod-shaped</p><p>bacteria with optical tweezers. Scientific Reports 2019 9:1, 9(1), 1-9.</p><p></p><p>Zhao, G. H., Kapur, N., Carlin, B., Selinger, E., & Guthrie, J. T. (2011).</p><p>Characterisation of the interactive properties of microcrystalline cellulose-</p><p>carboxymethyl cellulose hydrogels. International Journal of Pharmaceutics,</p><p>415(1-2), 95-101.</p><p></p><p>Zhao, X. (2014). Multi-scale multi-mechanism design of tough hydrogels: Building</p><p>dissipation into stretchy networks. In Soft Matter 10(5), 672-687.</p><p></p><p>Zhao, X., Zhao, N., Shi, Y., Xin, H., & Li, B. (2020). Optical Fiber Tweezers: A</p><p>Versatile Tool for Optical Trapping and Manipulation. Micromachines, 11(2),</p><p>114.</p><p></p><p>Zheng, B., Li, C. Y., Huang, S., Zhang, Z. L., Wu, Q. S., Pang, D. W., & Tang, H. W.</p><p>(2022). Optical tweezers assisted analyzing and sorting of tumor cells tagged</p><p>with fluorescence nanospheres in a microfluidic chip. Sensors and Actuators B:</p><p>Chemical, 368, 132173.</p><p></p><p>Zhu, R., Avsievich, T., Popov, A., & Meglinski, I. (2020). Optical Tweezers in Studies</p><p>of Red Blood Cells. Cells, 9(3), 545.</p><p></p><p>Zmyslony, M., Dradrach, K., Haberko, J., Nalecz-Jawecki, P., Rogoz, M., &</p><p>Wasylczyk, P. (2020). Optical Pliers: Micrometer-Scale, Light-Driven Tools</p><p>Grown on Optical Fibers. Advanced Materials, 32(33), 2002779.</p> |
| spellingShingle | QC Physics Wan Nor Suhaila Wan Aziz Optical trapping and manipulation of microcrystalline cellulose microcluster (MCCM) for microtool applications |
| thesis_level | PhD |
| title | Optical trapping and manipulation of microcrystalline cellulose microcluster (MCCM) for microtool applications |
| title_full | Optical trapping and manipulation of microcrystalline cellulose microcluster (MCCM) for microtool applications |
| title_fullStr | Optical trapping and manipulation of microcrystalline cellulose microcluster (MCCM) for microtool applications |
| title_full_unstemmed | Optical trapping and manipulation of microcrystalline cellulose microcluster (MCCM) for microtool applications |
| title_short | Optical trapping and manipulation of microcrystalline cellulose microcluster (MCCM) for microtool applications |
| title_sort | optical trapping and manipulation of microcrystalline cellulose microcluster mccm for microtool applications |
| topic | QC Physics |
| url | https://ir.upsi.edu.my/detailsg.php?det=12267 |
| work_keys_str_mv | AT wannorsuhailawanaziz opticaltrappingandmanipulationofmicrocrystallinecellulosemicroclustermccmformicrotoolapplications |