An optimized federated learning framework for internet of vehicles based on noise data and incremental data processing

Bibliographic Details
Main Author: Lei, Yuan
Format: Thesis
Language:English
Published: 2024
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=12869
Abstract Abstract here
_version_ 1855626329526894592
author Lei, Yuan
author_facet Lei, Yuan
author_sort Lei, Yuan
description
format Thesis
id upsi-12869
institution Universiti Pendidikan Sultan Idris
language English
publishDate 2024
record_format sWADAH
record_pdf Restricted
spelling upsi-128692025-06-26 An optimized federated learning framework for internet of vehicles based on noise data and incremental data processing 2024 Lei, Yuan QA Mathematics <p>Internet of Vehicles (IoV) technology has been rapidly advancing, making intelligent transportation systems the future trend. This research revolves around building efficient and secure vehicular networks using data processing mechanisms backed by machine learning and information security. However, noise and incremental data present challenges to vehicular network development. This study proposes two novel federated learning frameworks, namely the Outlier Detection and Exponential Smoothing Federated Learning (OES-FED) and Federated Learning Framework Based on Incremental Weighting and Diversity Selection for IoV (FED-IW&DS), to overcome the above problems. The OES-FED framework leveraged anomaly detection and exponential smoothing to filter noise data, thus, improving model robustness and enhancing communication efficiency. In terms of accuracy, it outperformed the existing Federated Learning-Average (FED-AVG) and FED-SGD models on three datasets by 44.46% and 2.36%, respectively. Furthermore, the FED-IW&DS framework that integrates incremental weights and diversity selection to effectively deal with issues of growing data scale was able to achieve rapid information sharing while preserving user privacy. The superiority of FED-IW&DS was clearly proven through its performance on two data sets, which found its accuracy to exceed that of the Fed-prox model by 30- 35%. Ultimately, integrating the OES-FED and FED-IW&DS frameworks unveiled two critical integration points: the execution order and transition point of the two frameworks. By synergistically integrating the two frameworks, the proposed strategy unlocked new federated learning solutions for IoV as it yielded up to 5-10% higher accuracy compared to employing either framework individually. This study highlights novel approaches that address noise and incremental data challenges in IoV, yielding substantial advancements in both theoretical research and practical applications. The research outcomes have several implications, of which the proposed solutions play an essential role in improving communication efficiency, enhancing data processing capabilities, protecting user privacy, and providing crucial theoretical support and practical reference for future research and optimization of data processing mechanisms in IoV.</p> 2024 thesis https://ir.upsi.edu.my/detailsg.php?det=12869 https://ir.upsi.edu.my/detailsg.php?det=12869 text eng N/A openAccess Doctoral Perpustakaan Tuanku Bainun Fakulti Komputeran dan META-Teknologi <p>Acheampong, R. A., Cugurullo, F., Gueriau, M., & Dusparic, I. (2021). Can autonomous vehicles enable sustainable mobility in future cities? Insights and policy challenges from user preferences over different urban transport options. Cities, 112,103134. https://doi.org/10.1016/j.cities.2021.103134</p><p>Ahmad,K.,&Bale,T.A. (2001).Simulationof quantificationabilitiesusingamodular neural network approach. Neural Computing & Applications, 10(1), 7788. https://doi.org/10.1007/s521-001-8046-1</p><p>Ahmad, W., Rasool,A., Javed,A. R., Baker, T., &Jalil, Z. (2022).Cyber securityin IoT-based cloud computing: A comprehensive survey. Electronics, 11(1), 16. https://doi.org/10.3390/electronics11010016</p><p>Ahmed, L., Ahmad, K., Said, N., Qolomany, B., Qadir, J., & Al-Fuqaha, A. (2020). Active learning based federated learning for waste and natural disaster image classification. IEEE Access, 8,208518208531.</p><p>Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. (2020). Federated learning: A survey on enabling technologies, protocols, and applications. IEEE Access, 8, 140699140725. https://doi.org/10.1109/ACCESS.2020.3013541</p><p>Alotaibi,J.,&Alazzawi, L. (2022). PPIoV:Aprivacypreserving-based frameworkfor IoV-Fogenvironmentusingfederatedlearningandblockchain.InR.Paul(Ed.), 2022 IEEE World AI IOT Congress (pp. 597603). IEEE. https://doi.org/10.1109/AIIoT54504.2022.9817205</p><p>Alqahtani,A. S.,Trabelsi,Y.,Ezhilarasi,P.,Krishnamoorthy,R.,Lakshmisridevi,S.,& Shargunam, S. (2024). Homomorphic encryption algorithm providing security and privacy for IoT with optical fiber communication. Optical and Quantum Electronics, 56(3),487. https://doi.org/10.1007/s11082-023-06098-5</p><p>Al-Sharman, M., Murdoch, D., Cao, D., Lv, C., Zweiri, Y., Rayside, D., & Melek, W. (2021).Asensorlessstateestimationfor asafety-orientedcyber-physicalsystem in urban driving: Deep learning approach. IEEE-Caa Journal of Automatica Sinica, 8(1),169178. https://doi.org/10.1109/JAS.2020.1003474</p><p>Ambroziak,L.,Kownacki,C.,&Simha,A.(2022).Switchedcontrolstrategyfor robust formation flight with HIL and In-Flight validation. IEEE International Conference on Communications (Icc 2022). https://doi.org/10.1109/ICC45855.2022.9838250</p><p>Anbalagan, S., Raja, G., Gurumoorthy, S., Suresh, R. D., & Dev, K. (2023). IIDS: Intelligent intrusion detection system for sustainable development in autonomousvehicles.IEEE Transactions on Intelligent Transportation Systems, 24(12),1586615875. https://doi.org/10.1109/TITS.2023.3271768</p><p>Anowar, F., & Sadaoui, S. (2020). Incremental neural-network learning for big fraud data. 2020 IEEE International Conference on Systems, Man, and Cybernetics, 35513557. https://www.webofscience.com/wos/woscc/summary/6d5cfd17f044-4879-ad54-691c2cc432ad-54465123/relevance/1</p><p>Ardabili, S., Mosavi, A., & Varkonyi-Koczy, A. R. (2020). Advances in machine learning modeling reviewing hybrid and ensemble methods. In A. R. VarkonyiKoczy (Ed.), Engineering for Sustainable Future (Vol. 101, pp. 215 227). Springer International PublishingAg. https://doi.org/10.1007/978-3-03036841-8_21</p><p>Arias-Otalora, D.-S., Florez,A., Mellizo, G., Rodriguez-Garavito, C. H., Romero, E., &Tumialan,J.A.(2022).Amachinelearningbasedcommandvoicerecognition interface. In J. C. Figueroa-Garcia, C. Franco, Y. Diaz-Gutierrez, & G. Hernandez-Perez(Eds.), Applied Computer Sciences in Engineering, Wea 2022 (Vol. 1685, pp. 450460). Springer International Publishing Ag. https://doi.org/10.1007/978-3-031-20611-5_37</p><p>Ayub,A.,&Wagner,A.R.(2020).Cognitively-inspiredmodelfor incrementallearning using a few examples. 2020 IEEE/Cvf Conference on Computer Vision and Pattern Recognition Workshops, 897906. https://doi.org/10.1109/CVPRW50498.2020.00119</p><p>Babaghayou,M.,Labraoui,N.,Ferrag,M.A.,&Maglaras,L.(2021).Between location protectionandoverthrowing:Acontrarinessframeworkstudyfor smartvehicles. 2021 IEEE International Conference on Consumer Electronics. https://doi.org/10.1109/ICCE50685.2021.9427612</p><p>Baker-Eveleth,L., Stone, R., & Eveleth,D. (2022).Understandingsocialmediausers privacy-protection behaviors. Information and Computer Security, 30(3), 324 345. https://doi.org/10.1108/ICS-07-2021-0099</p><p>Balakrishnan,R.,Akdeniz,M.,Dhakal,S.,Anand,A.,Zeira,A.,&Himayat,N.(2021). Resource management and model personalization for federated learning over wireless edge networks. Journal of Sensor and Actuator Networks, 10(1), 17. https://doi.org/10.3390/jsan10010017</p><p>Banabilah, S.,Aloqaily, M.,Alsayed, E., Malik, N., & Jararweh,Y. (2022). Federated learning review: Fundamentals, enabling technologies, and futureapplications. Information Processing & Management, 59(6), 103061. https://doi.org/10.1016/j.ipm.2022.103061</p><p>Bao,W.,Wu,C.,Guleng,S.,Zhang,J.,Yau,K.-L.A.,&Ji,Y.(2021).Edgecomputingbased joint client selection and networking scheme for federated learning in vehicular IoT. China Communications, 18(6),3952.</p><p>Belschner, R., & Pereira, C. (1995). Mapping pearls high-level real-time constructs to a C run-time library under real-time unix. Control Engineering Practice, 3(6), 849854. https://doi.org/10.1016/0967-0661(95)00069-7</p><p>Bhatia,R.,&Singh,N. P.(2022).Gender recognitionbyvoiceusingmachinelearning. InI.Woungang,S.K.Dhurandher,K.K.Pattanaik,A.Verma,&P.Verma(Eds.), Advanced Network Technologies and Intelligent Computing (Vol. 1534, pp. 307318).Springer InternationalPublishingAg. https://doi.org/10.1007/978-3030-96040-7_25</p><p>Bhattacharyya, S., Neagu, A. T., & Firu, E. (2021). An investigation of bin-bin correlation by the method of factorial correlator in high-energy heavy ion collisions. International Journal of Modern Physics E, 30(12), 2150103. https://doi.org/10.1142/S0218301321501032</p><p>Birzu,C.,French,P.,Caccese,M.,Cerretti,G.,Idbaih,A.,Zagonel,V.,&Lombardi,G. (2021). Recurrent glioblastoma: From molecular landscape to new treatment perspectives. Cancers, 13(1),47. https://doi.org/10.3390/cancers13010047</p><p>Boln-Canedo,V.,Remeseiro,B.,&Cancela,B.(2018).Featureselectionforbigvisual data: Overview and challenges. International Conference Image Analysis and Recognition,136143.</p><p>Bomfim, R.A. (2023). Last dental visit and severity of tooth loss:Amachine learning approach. BMC Research Notes, 16(1), 347. https://doi.org/10.1186/s13104023-06632-4</p><p>Breivold,H.P.,&Rizvanovic,L.(2018).Business modelinganddesignintheinternetof-things context. Proceedings 2018 IEEE 11th International Conference on Cloud Computing,524531. https://doi.org/10.1109/CLOUD.2018.00073</p><p>Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z.,Yan,Y., &Yang, P. (2021). Large-scale many-objective deployment optimization of edge servers. IEEE Transactions on Intelligent Transportation Systems, 22(6), 38413849. https://doi.org/10.1109/TITS.2021.3059455</p><p>Cao, M., Zheng, L., Jia, W., & Liu, X. (2021). Joint 3D reconstruction and object tracking for traffic video analysis under IoV environment. IEEE Transactions on Intelligent Transportation Systems, 22(6), 35773591. https://doi.org/10.1109/TITS.2020.2995768</p><p>Ceballos,G.R.,&Larios,V.M. (2016).Amodeltopromotecitizendrivengovernment in a smart city use case at GDL smart city. IEEE Second International Smart Cities Conference, 781786. https://www.webofscience.com/wos/woscc/summary/ff312112-492c-4e5787ed-e610102a9875-60cc519f/relevance/1</p><p>Chamikara, M. a. P., Bertok, P., Khalil, I., Liu, D., & Camtepe, S. (2021). Privacy preserving distributed machine learning with federated learning. Computer Communications, 171, 112125. https://doi.org/10.1016/j.comcom.2021.02.014</p><p>Chang, C.-C., & Li, C.-T. (2019). Algebraic secret sharing using privacy homomorphisms for IoT-based healthcare systems. Mathematical Biosciences and Engineering, 16(5),33673381. https://doi.org/10.3934/mbe.2019168</p><p>Chen, C. L. (1999). On double-byte error-correcting codes. IEEE Transactions On Information Theory, 45(6),22072208. https://doi.org/10.1109/18.782175</p><p>Chen, C., Liu, L., Wan, S., Hui, X., & Pei, Q. (2022). Data dissemination for industry 4.0 applications in internet of vehicles based on short-term traffic prediction. ACM Transactions on Internet Technology, 22(1), 3. https://doi.org/10.1145/3430505</p><p>Chen, H., & Li, J. (2019). Finding stable clustering for noisy data via structure-aware representation.InC.Baru,J.Huan,L.Khan,X.H.Hu,R.Ak,Y.Tian,R.Barga,</p><p>C. Zaniolo, K. Lee, &Y. F. Ye (Eds.), 2019 IEEE International Conference on Big Data (pp. 4655). IEEE. https://www.webofscience.com/wos/woscc/fullrecord/WOS:000554828700010</p><p>Chen,L.,&Masayuki,M.(2020).Mitigatecatastrophicforgettingbyvaryinggoals.In A. P. Rocha, L. Steels, & J. VanDenHerik (Eds.), Proceedings of the 12th International Conference on Agents and Artificial Intelligence, Vol 2 (pp. 530 537).Scitepress. https://doi.org/10.5220/0008950005300537</p><p>Chen, M., Wu, J.,Yin,Y., Huang, Z., Liu, Q., & Chen, E. (2022). Dynamic clustering federatedlearningfor non-IIDdata.InL. Fang,D. Povey,G. Zhai,T. Mei,&R. Wang (Eds.), Artificial Intelligence, CICAI 2022, PT III (Vol. 13606, pp. 119 131). Springer International PublishingAg. https://doi.org/10.1007/978-3-03120503-3_10</p><p>Chen, M.,Yang, Z., Saad, W., Yin, C., Poor, H. V., & Cui, S. (2021).A joint learning andcommunicationsframeworkfor federatedlearningover wirelessNetworks. IEEE Transactions on Wireless Communications, 20(1), 269283. https://doi.org/10.1109/TWC.2020.3024629</p><p>Chen,Y., Sun, X., & Jin,Y. (2020). Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation. IEEE Transactions on Neural Networks and Learning Systems, 31(10),42294238. https://doi.org/10.1109/TNNLS.2019.2953131</p><p>Chen, Z., Li, D., Zhao, M., Zhang, S., & Nu, J. (2020). Semi-federated learning. 2020 IEEE Wireless Communications and Networking Conference. https://www.webofscience.com/wos/woscc/fullrecord/WOS:000569342900003</p><p>Cheng, J., Liu, Z., Shi, Y., Luo, P., & Sheng, V. S. (2023). GrCol-PPFL: User-based group collaborative federated learning privacy protection framework. CMC-Computers Materials & Continua, 74(1), 19231939. https://doi.org/10.32604/cmc.2023.032758</p><p>Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1).https://doi.org/10.1186/s12864-019-6413-7</p><p>Chicco, D., Totsch, N., & Jurman, G. (2021). The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. Biodata Mining, 14(1), 13. https://doi.org/10.1186/s13040-021-00244-z</p><p>Chitty-Venkata,K.T.,&Somani,A.K.(2021).Array-Awareneuralarchitecturesearch. 2021 IEEE 32nd International Conference on Application-Specific Systems, Architectures and Processors, 125132. https://doi.org/10.1109/ASAP52443.2021.00026</p><p>Choi,J.,&Pokhrel,S. R.(2020).FederatedlearningwithmultichannelALOHA.IEEE Wireless Communications Letters, 9(4), 499502. https://doi.org/10.1109/LWC.2019.2960243</p><p>Costa-Filho, C. F. F., Negreiro, J., & Costa, M. G. F. (2022). Multimodal biometric systembasedonautoencodersandlearningvector quantization. InT.F.Bastos-Filho, E. M. D. Caldeira, &A. Frizera-Neto (Eds.), XXVII Brazilian Congress on Biomedical Engineering, CBEB 2020 (pp. 16111617). Springer. https://doi.org/10.1007/978-3-030-70601-2_236</p><p>Cui,W.,Xia,W.,Lan,Z.,Qian,C.,Yan,F.,&Shen,L.(2018).Aself-adaptivefeedback handoff algorithm based decision tree for internet of vehicles. International Conference on Ad Hoc Networks,177190.</p><p>Cui,W.,Xia,W.,Lan,Z.,Qian,C.,Yan,F.,&Shen,L.(2019).Aself-adaptivefeedback handoff algorithm based decision tree for internet of vehicles. In J. Zheng,W. Xiang, P. Lorenz, S. Mao, & F. Yan (Eds.), Ad Hoc Networks, Adhocnets 2018 (Vol. 258, pp. 177190). Springer International Publishing Ag. https://doi.org/10.1007/978-3-030-05888-3_17</p><p>Cumpston, M. S., McKenzie, J. E., Welch, V. A., & Brennan, S. E. (2022). Strengthening systematic reviews in public health: Guidance in the Cochrane handbookfor systematicreviewsof interventions,2ndedition.Journal of Public Health, 44(4),E588E592. https://doi.org/10.1093/pubmed/fdac036</p><p>Curik,P., Ploszek,R.,& Zajac,P. (2022). Practical useof secretsharing for enhancing privacy in clouds. Electronics, 11(17), 2758. https://doi.org/10.3390/electronics11172758</p><p>Cuzzocrea, A. (2021). Big data lakes: Models, Frameworks, and techniques. In H. Unger, J. Kim, U. Kang, C. SoIn, J. Du, W. Saad, Y. G. Ha, C. Wagner, J. Bourgeois, C. Sathitwiriyawong, H. Y. Kwon, & C. Leung (Eds.), 2021 IEEE International Conference on Big Data and Smart Computing (pp. 14). IEEE. https://doi.org/10.1109/BigComp51126.2021.00010</p><p>Dai, X., Spasic, I., Chapman, S., & Meyer, B. (2020). The State of the art in implementing machine learning for mobile apps:Asurvey. IEEE Southeastcon 2020. Annual IEEE SoutheastCon Conference. https://doi.org/10.1109/southeastcon44009.2020.9249652</p><p>Dan, S., Bao, H., & Sugiyama, M. (2021). Learning from noisy similar anddissimilar data. In N. Oliver, F. PerezCruz, S. Kramer, J. Read, & J. A. Lozano (Eds.), Machine Learning and Knowledge Discovery in Databases, Ecml Pkdd 2021: Research Track, Pt Ii (Vol. 12976, pp. 233249). Springer International PublishingAg. https://doi.org/10.1007/978-3-030-86520-7_15</p><p>Das, S. (2019). A machine learning model for detecting respiratory problems using voicerecognition. 2019 IEEE 5th International Conference for Convergence in Technology (I2ct). https://www.webofscience.com/wos/woscc/summary/30095666-097f-4532b5b4-1d7f8d0ca707-7c980e29/relevance/1</p><p>Deb, R., & Liew, A. W.-C. (2019). Noisy values detection and correction of traffic accident data. Information Sciences, 476, 132146. https://doi.org/10.1016/j.ins.2018.10.002</p><p>Demircioglu, E. D., & Kalipsiz, O. (2022). API message-driven regression testing framework. Electronics, 11(17), 2671. https://doi.org/10.3390/electronics11172671</p><p>Dhada, M., Jain, A. K., & Parlikad,A. K. (2020). Empirical convergence analysis of federated averaging for failure prognosis. IFAC Papersonline, 53(3), 360365. https://doi.org/10.1016/j.ifacol.2020.11.058</p><p>Dieci, M. V., Miglietta, F., & Guarneri, V. (2021). Immune infiltrates in breast cancer: Recent updates and clinical implications. Cells, 10(2), 223. https://doi.org/10.3390/cells10020223</p><p>Diu, J., Chen, Y., Tian, Z., Guizani, N., & Du, X. (2021). The security of internet of vehicles network: Adversarial examples for trajectory mode detection. IEEE Network, 35(5),279283. https://doi.org/10.1109/MNET.121.2000435</p><p>Dlugosch,O.,Brandt,T., &Neumann,D. (2022).Combining analyticsand simulation methods to assess the impact of shared, autonomous electric vehicles on sustainable urban mobility. Information & Management, 59(5), 103285. https://doi.org/10.1016/j.im.2020.103285</p><p>Dong, Y., Yang, X., Li, J., Liao, G., Tian, K., & Guan, H. (2012). High performance network virtualization with SR-IOV. Journal of Parallel and Distributed Computing, 72(11),14711480. https://doi.org/10.1016/j.jpdc.2012.01.020</p><p>Du, B., & Wu, C. (2022). Federated graph learning withperiodic neighbour sampling. 2022 IEEE/ACM 30TH International Symposium On Quality Of Service (IWQOS). https://doi.org/10.1109/IWQoS54832.2022.9812908</p><p>Du,Z.,Wu,C.,Yoshinaga,T.,Yau,K.-L.A., Ji,Y.,& Li,J. (2020).Federatedlearning for vehicular internet of things: Recent advances and open issues. IEEE Open Journal of the Computer Society, 1,4561.</p><p>Duan, W., Gu, J., Wen, M., Zhang, G., Ji, Y., & Mumtaz, S. (2020). Emerging technologies for 5G-IoV networks: Applications, trends and opportunities. IEEE Network, 34(5),283289. https://doi.org/10.1109/MNET.001.1900659</p><p>Duncan,K.,Komendantskaya,E.,Stewart,R.,&Lones,M.(2020).Relative robustness of quantized neural networks against adversarial attacks. 2020 International Joint Conference on Neural Networks. https://doi.org/10.1109/ijcnn48605.2020.9207596</p><p>El Mazouzi, H., Khannous, A., Amechnoue, K., & Rghioui, A. (2023). Security challenges facing blockchain based-IoV network: A systematic review. International Journal of Advanced Computer Science and Applications, 14(5), 249256.</p><p>Elmidaoui, S., Cheikhi, L., Idri,A., &Abran,A. (2020). Machine learning techniques for softwaremaintainabilityprediction:Accuracyanalysis.Journal of Computer Science and Technology, 35(5), 11471174. https://doi.org/10.1007/s11390020-9668-1</p><p>Epstein, L. (2021). On bin packing with clustering and bin packing with delays. Discrete Optimization, 41, 100647. https://doi.org/10.1016/j.disopt.2021.100647</p><p>Fachola,C.,Tornaria,A.,Bermolen,P.,Capdehourat,G.,Etcheverry,L.,&Fariello,M. I. (2023). Federated learning for data analytics in education. Data, 8(2), 43. https://doi.org/10.3390/data8020043</p><p>Fan, H., & Zhou, Z. (2023). Privacy-preserving data aggregation scheme based on federated learning for IIoT. Mathematics, 11(1), 214. https://doi.org/10.3390/math11010214</p><p>Fang, C., Guo,Y., Wang, N., & Ju,A. (2020). Highly efficient federated learning with strong privacy preservation in cloud computing. Computers & Security, 96, 101889. https://doi.org/10.1016/j.cose.2020.101889</p><p>Feng, C., Yu, K., Aloqaily, M., Alazab, M., Lv, Z., & Mumtaz, S. (2020). Attribute-based encryption with parallel outsourced decryption for edge intelligent IoV. IEEE Transactions on Vehicular Technology, 69(11), 1378413795. https://doi.org/10.1109/TVT.2020.3027568</p><p>Firouzi,F.,Farahani,B.,&Marinsek,A.(2022).Theconvergenceandinterplayof edge, fog, and cloud in theAI-driven Internet of Things (IoT). Information Systems, 107,101840. https://doi.org/10.1016/j.is.2021.101840</p><p>Foukalas,F.,Tziouvaras,A.,&Tsiftsis,T.A.(2021).Anoverviewof enablingfederated learning over wireless networks. 2021 IEEE International Mediterranean Conference on Communications and Networking (IEEE Meditcom 2021),271 276. https://doi.org/10.1109/MeditCom49071.2021.9647687</p><p>Frigo, A. L., Zentgraf, R.-D., & Bleninger, T. B. (2019). Two-dimensional vessel-current interaction model for inland waterways assessment. Journal of Waterway Port Coastal and Ocean Engineering, 145(1), 04018036. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000494</p><p>Fu,S.,Wang,X.,Tang,J.,Lan,S.,&Tian,Y.(2024).Generalizedrobustlossfunctions for machine learning. Neural Networks, 171, 200214. https://doi.org/10.1016/j.neunet.2023.12.013</p><p>Fueller,J.,Hutter,K.,Wahl,J.,Bilgram,V.,&Tekic,Z. (2022).HowAIrevolutionizes innovation managementPerceptions and implementation preferences of AI-based innovators. Technological Forecasting and Social Change, 178, 121598. https://doi.org/10.1016/j.techfore.2022.121598</p><p>Furfaro,A.,&Nigro,L.(2003).Temporalverificationof communicatingreal-timestate machines using Uppaal. 2003 IEEE International Conference on Industrial Technology, Vols 1 and 2, Proceedings, 399404. https://www.webofscience.com/wos/alldb/summary/b97b75c9-c558-40f1b9cf-61d716499fd1-60ca75c4/relevance/1</p><p>Galletta, A., Taheri, J., & Villari, M. (2019). On the applicability of secret share algorithms for saving data on IoT, edge and cloud devices. 2019 International Conference on Internet of Things and IEEE Green Computing And Communications and IEEE Cyber, Physical And Social Computing and IEEE Smart Data, 1421. https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00026</p><p>Gan, J., Zhang, L., Chen, H., Bai, L., Zhang, X., Yang, L., & Zhang, Y. (2023). Underground garage patrol based on road marking recognition by Keras and Tensorflow. Applied Sciences-Basel, 13(4), 2385. https://doi.org/10.3390/app13042385</p><p>Gao,H.,Huang,W.,Liu,T.,Yin,Y.,&Li,Y. (2023).PPO2: Location privacy-oriented task offloading to edge computing using reinforcement learning for intelligent autonomous transport systems. IEEE Transactions On Intelligent Transportation Systems, 24(7), 75997612. https://doi.org/10.1109/TITS.2022.3169421</p><p>Gao, M., Li, J., Di, X., Li, X., & Zhang, M. (2024).Ablind signature scheme for IoV based on 2D-SCML image encryption and lattice cipher. Expert Systems with Applications, 246,123215. https://doi.org/10.1016/j.eswa.2024.123215</p><p>Gao,Y.,Kim, M.,Abuadbba,S.,Kim,Y., Thapa,C., Kim, K., Camtep, S.A.,Kim, H., & Nepal, S. (2020). End-to-end evaluation of federated learning and split learning for internet of things. 2020 International Symposium on Reliable Distributed Systems (SRDS 2020), 91100. https://doi.org/10.1109/SRDS51746.2020.00017</p><p>Gao, Y., Zhang, P., Li, Z., Zhou, C., Liu, Y., & Hu, Y. (2021). Heterogeneous graph neural architecture search. In J. Bailey, P. Miettinen, Y. S. Koh, D. Tao, & X. Wu (Eds.), 2021 21st IEEE International Conference on Data Mining (pp. 10661071).https://doi.org/10.1109/ICDM51629.2021.00124</p><p>Ge, X., Xiao, S., Han, Q.-L., Zhang, X.-M., & Ding, D. (2022). Dynamic event-triggered scheduling and platooning control co-design for automated vehicles over vehicular ad-hocnetworks.IEEE-CAA Journal of Automatica Sinica,9(1), 3146. https://doi.org/10.1109/JAS.2021.1004060</p><p>Goh,M.J.S.,Chiew,Y.S.,&Foo,J.J.(2020).Outlierpercentageestimationfor shape-and parameter-independent outlier detection. IET Image Processing, 14(14), 34143421.</p><p>Gong, J., Kang, J., Simeone, O., & Kassab, R. (2022). Forget-svgd: Particle-based bayesian federated unlearning. 2022 IEEE Data Science and Learning Workshop.https://doi.org/10.1109/DSLW53931.2022.9820602</p><p>Goyal,H.,&Saha,S.(2022).Multi-partycomputationinIoTfor privacy-preservation. 2022 IEEE 42ND International Conference on Distributed Computing Systems, 12801281. https://doi.org/10.1109/ICDCS54860.2022.00133</p><p>Gu, K., Wang, K., Li, X., & Jia, W. (2022). Multi-fogs-based traceable privacy-preserving scheme for vehicular identity in internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(8), 1254412561. https://doi.org/10.1109/TITS.2021.3115171</p><p>HaddadPajouh, H., Dehghantanha,A., Parizi, R. M.,Aledhari, M., & Karimipour, H. (2021).Asurvey on internet of things security: Requirements, challenges, and solutions. Internet of Things, 14, 100129. https://doi.org/10.1016/j.iot.2019.100129</p><p>Hajiheydari,N.,Talafidaryani,M.,& Khabiri,S. (2019).IoT big datavaluemap:How to generate value from IoT data. ICSLT 2019: Proceedings of the 5th International Conference on E-Society, E-Learning and E-Technologies, 98 103. https://doi.org/10.1145/3312714.3312728</p><p>Han, S., Wang, F.-Y., Luo, G., Li, L., & Qu, F. (2023). Parallel surfaces: ServiceorientedV2Xcommunicationsfor autonomousvehicles. IEEE Transactions on Intelligent Vehicles, 8(11), 45364545. https://doi.org/10.1109/TIV.2023.3324507</p><p>Han, W., Cheng, M., Lei, M., Xii, H.,Yang,Y., & Qian, L. (2020). Privacy protection algorithm for the internet of vehicles based on local differential privacy and game model. Cmc-Computers Materials & Continua, 64(2), 10251038. https://doi.org/10.32604/cmc.2020.09815</p><p>Hao, S., Zhang, H., & Song, M. (2019). Big data, big data analytics capability, and sustainable innovation performance. Sustainability, 11(24), 7145. https://doi.org/10.3390/su11247145</p><p>Harrabi, S., Ben Jaafar, I., & Ghedira, K. (2023). Survey on IoV routing protocols. Wireless Personal Communications, 128(2), 791811. https://doi.org/10.1007/s11277-022-09976-5</p><p>Hbaieb,A.,Ayed,S.,&Chaari,L.(2022).Asurveyof trustmanagementintheInternet of vehicles. Computer Networks, 203, 108558. https://doi.org/10.1016/j.comnet.2021.108558</p><p>He,J.,Wang,C.,&Chen,H.(2021).NewEnginetopromotebigdataindustryupgrade. InK.Arai(Ed.), Intelligent Computing, Vol 2 (Vol. 284,pp.232248).Springer InternationalPublishingAg. https://doi.org/10.1007/978-3-030-80126-7_18</p><p>He, J., Zhang, S., Yang, M., Shan, Y., & Huang, T. (2022). BDCN: Bi-directional cascade network for perceptual edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(1), 100113. https://doi.org/10.1109/TPAMI.2020.3007074</p><p>He, W. (2017). Research on LBS privacy protection technology in mobile social networks. In B. Xu (Ed.), 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (pp. 7376). IEEE. https://www.webofscience.com/wos/woscc/summary/dcfb67ba-5f09-4eae9b2f-aeb5f2647f67-60cc7d07/relevance/1</p><p>He,W., Huang,Z., Liang, M., Liang, S.,&Yang,H. (2021).Blending pruning criteria for convolutional neural networks. In I. Farkas, P. Masulli, S. Otte, & S. Wermter (Eds.),Artificial Neural Networks and Machine LearningIcann 2021, Pt Iv (Vol. 12894, pp. 315). Springer International Publishing Ag. https://doi.org/10.1007/978-3-030-86380-7_1</p><p>Heidari, A., Navimipour, N. J., & Unal, M. (2022). Applications of ML/DL in the management of smart cities and societies based on new trends in information technologies:Asystematicliteraturereview. Sustainable Cities and Society, 85, 104089. https://doi.org/10.1016/j.scs.2022.104089</p><p>Hinton,G.,Vinyals,O.,&Dean,J.(2015).Distilling the knowledge in a neural network (arXiv:1503.02531).arXiv. http://arxiv.org/abs/1503.02531</p><p>Horio, Y. (2019). Chaotic neural network reservoir. 2019 International Joint Conference on Neural Networks. https://www.webofscience.com/wos/woscc/summary/f500a5ac-2871-44818269-0b7beb6da9cf-d13141d0/relevance/1</p><p>Hou, X., Ren, Z., Wang, J., Cheng, W., Ren, Y., Chen, K.-C., & Zhang, H. (2020). Reliablecomputationoffloading for edge-computing-enabledsoftware-defined IoV. IEEE Internet of Things Journal, 7(8), 70977111. https://doi.org/10.1109/JIOT.2020.2982292</p><p>Hu,P.,Wang,Y.,Vajdi,A.,Gong,B.,&Wang,Y.(2021).Secure multi-subintervaldata aggregation scheme with interval privacy preservation for vehicle sensing systems. Journal of Circuits Systems and Computers, 30(16), 2150286. https://doi.org/10.1142/S0218126621502868</p><p>Hu,S.,Li,Q.,&He,B.(2023).Communication-efficientgeneralizedneuronmatching for federated learning. Proceedings of the 52nd International Conference on Parallel Processing, ICPP 2023, 254263. https://doi.org/10.1145/3605573.3605726</p><p>Hu, X., Li, R., Wang, L., Ning,Y., & Ota, K. (2023).A data sharing scheme based on federated learning in IoV. IEEE Transactions on Vehicular Technology, 72(9), 1164411656. https://doi.org/10.1109/TVT.2023.3266100</p><p>Huang, J., Xu, C., Ji, Z., Xiao, S., Liu, T., Ma, N., & Zhou, Q. (2022). AFLPC: An asynchronous federated learning privacy-preserving computing model applied to 5G-V2X. Security and Communication Networks, 2022, 9334943. https://doi.org/10.1155/2022/9334943</p><p>Huang, L., Feng, X., Feng, A., Huang, Y., & Qian, L. P. (2022). Distributed deep learning-based offloading for mobile edge computing networks. Mobile Networks & Applications, 27(3), 11231130. https://doi.org/10.1007/s11036018-1177-x</p><p>Ilias, C., & Georgios, S. (2019). Machine learning for all: A more robust federated learning framework. In P. Mori, S. Furnell, & O. Camp (Eds.), Proceedings of the 5th International Conference on Information Systems Security and Privacy (pp. 544551).Scitepress. https://doi.org/10.5220/0007571705440551</p><p>Ingram, E., Gursoy, F., & Kakadiaris, I. A. (2022). Accuracy, fairness, and interpretability of machine learning criminal recidivism models. 2022 IEEE/ACM International Conference on Big Data Computing, Applications and Technologies,233241. https://doi.org/10.1109/BDCAT56447.2022.00040</p><p>Iqbal, M., Tariq, A., Adnan, M., Din, I. U., & Qayyum, T. (2023). FL-ODP: An optimized differential privacy enabled privacy preserving federated learning. IEEE ACCESS, 11, 116674116683. https://doi.org/10.1109/ACCESS.2023.3325396</p><p>Jain,A., Rodriguez,D.,delAlamo,J. M.,& Sadeh,N. (2023). ATLAS:Automatically detectingdiscrepanciesbetweenprivacypoliciesand privacylabels.2023 IEEE European Symposium on Security And Privacy Workshops, 94107. https://doi.org/10.1109/EuroSPW59978.2023.00016</p><p>Jiang, J. C., Kantarci, B., Oktug, S., & Soyata, T. (2020). Federated learning in smart city sensing: Challenges and opportunities. Sensors, 20(21), 6230. https://doi.org/10.3390/s20216230</p><p>Jiang,W.,&Liu,J. (2017).Researchon addressingtechnologyof Internetof things.In M. Zhu&X. Xia(Eds.), Proceedings of the 2017 4th International Conference on Machinery, Materials and Computer (Vol.150,pp.149152).AtlantisPress. https://www.webofscience.com/wos/woscc/summary/a9624700-8726-4999b9ab-989086a95985-60cc12c8/relevance/1</p><p>Jorayeva, M., Akbulut, A., Catal, C., & Mishra, A. (2022). Machine learning-based software defect prediction for mobile applications: A systematic literature review. Sensors, 22(7),2551. https://doi.org/10.3390/s22072551</p><p>Kamma, K., Inoue, S., & Wada, T. (2022). Pruning ratio optimization with layer-wise pruning method for accelerating convolutional neural networks. IEICE Transactions on Information and Systems, E105D(1), 161169. https://doi.org/10.1587/transinf.2021EDP7096</p><p>Kang, M., & Kang, S. (2021). Data-free knowledge distillation in neural networks for regression. Expert Systems with Applications, 175, 114813. https://doi.org/10.1016/j.eswa.2021.114813</p><p>Karim,H., &Rawat, D. B.(2022).TollsOnlyPlease-Homomorphic encryptionfor toll transponder privacy in Internet of vehicles. IEEE Internet of Things Journal, 9(4),26272636. https://doi.org/10.1109/JIOT.2021.3056240</p><p>Khare,S.,&Totaro, M. (2019).BigData inIoT. 2019 10TH International Conference on Computing, Communication and Networking Technologies. https://www.webofscience.com/wos/woscc/summary/32e039cb-7a34-4dafafb7-0a40e9b907db-d12813db/relevance/1</p><p>Kim,D.-Y.,Jung, M., &Kim, S. (2021).An Internetof Vehicles(IoV) accessgateway design considering the efficiency of the in-vehicle ethernet backbone. Sensors, 21(1),98. https://doi.org/10.3390/s21010098</p><p>Kim, K., Kim, J. S., Jeong, S., Park, J.-H., & Kim, H. K. (2021). Cybersecurity for autonomous vehicles: Review of attacks and defense. Computers & Security, 103,102150. https://doi.org/10.1016/j.cose.2020.102150</p><p>Konen, J., Mcmahan, H. B., Yu, F. X., P Richtrik, & Bacon, D. (2016). Federated learning: Strategies for improving communication efficiency. http://doc.paperpass.com/patent/arXiv161005492.html</p><p>Kong,Q.,Lu,R.,Ma,M.,&Bao,H.(2019).Aprivacy-preservingsensorydatasharing scheme in Internet of Vehicles. Future Generation Computer Systems-the International Journal of Escience, 92, 644655. https://doi.org/10.1016/j.future.2017.12.003</p><p>Kosinski, M. (2021). Facial recognition technology can expose political orientation from naturalistic facial images. Scientific Reports, 11(1), 100. https://doi.org/10.1038/s41598-020-79310-1</p><p>Ku, H., Susilo, W., Zhang, Y., Liu, W., & Zhang, M. (2022). Privacy-preserving federated learning in medical diagnosis with homomorphic re-encryption. Computer Standards & Interfaces, 80, 103583. https://doi.org/10.1016/j.csi.2021.103583</p><p>Kumar,C.P., & Selvakumar,R.(2018).Authentication protocolusingerror correcting codesandcyclicredundancycheck.InS.Chellappan,W.Cheng,&W.Li(Eds.), Wireless Algorithms, Systems, and Applications (WASA 2018) (Vol. 10874, pp. 874882).Springer InternationalPublishingAg. https://doi.org/10.1007/978-3319-94268-1_80</p><p>Kuutti,S.,Bowden,R.,Jin,Y.,Barber,P.,&Fallah,S.(2021).Asurveyof deeplearning applications to autonomous vehicle control. IEEE Transactions on Intelligent Transportation Systems, 22(2), 712733. https://doi.org/10.1109/TITS.2019.2962338</p><p>Laghari, A. A., Khan, A. A., Alkanhel, R., Elmannai, H., & Bourouis, S. (2023). Lightweight-BIoV: Blockchain distributed ledger technology (BDLT) for Internet of Vehicles (IoVs). Electronics, 12(3), 677. https://doi.org/10.3390/electronics12030677</p><p>Lahiri,P.K.,Das,D.,Mansoor,W.,Banerjee,S.,&Chatterjee,P. (2020).Atrustworthy blockchainbasedframeworkor impregnableIoVinedgecomputing.2020 IEEE 17TH International Conference on Mobile Ad Hoc And Smart Systems, 2631. https://doi.org/10.1109/MASS50613.2020.00013</p><p>Le, C. P., Soltani, M., Ravier, R., & Tarokh, V. (2021). Task-awareneural architecture search. 2021 IEEE International Conference on Acoustics, Speech and Signal Processing,40904094. https://doi.org/10.1109/ICASSP39728.2021.9414412</p><p>Lei, Y., Wang, S. L., Su, C., & Ng, T. F. (2022). OES-Fed: A federated learning frameworkinvehicular networkbasedonnoisedatafiltering. PeerJ Computer Science, 8,e1101. https://doi.org/10.7717/peerj-cs.1101</p><p>Lei, Y., Wang, S. L., Zhong, M., Wang, M., & Ng, T. F. (2022).A federated learning framework based on incremental weighting and diversity selection for internet of vehicles. Electronics, 11(22), Article 22. https://doi.org/10.3390/electronics11223668</p><p>Li,B.,Liang,R.,Zhou,W.,Yin,H.,Gao,H.,&Cai,K. (2022).LBS meetsblockchain: An efficient method with security preserving trust in SAGIN. IEEE Internet of Things Journal, 9(8),59325942. https://doi.org/10.1109/JIOT.2021.3064357</p><p>Li, B., Shi, Y., Guo, Y., Kong, Q., & Jiang, Y. (2022). Incentive and knowledge distillation based federated learning for Cross-Silo applications. IEEE Infocom 2022 -IEEE Conference on Computer Communications Workshops. https://doi.org/10.1109/INFOCOMWKSHPS54753.2022.9798320</p><p>Li, J., Ji, Y., Choo, K.-K. R., & Hogrefe, D. (2019). CL-CPPA: Certificate-Less Conditional Privacy-Preserving Authentication Protocol for the Internet of Vehicles. IEEE Internet of Things Journal, 6(6), 1033210343. https://doi.org/10.1109/JIOT.2019.2938008</p><p>Li, M., Hsu, W., Xie, X., Cong, J., & Gao, W. (2020). SACNN: Self-Attention convolutional neural network for low-dose CT denoising with self-supervised perceptuallossnetwork. IEEE Transactions on Medical Imaging, 39(7),2289 2301. https://doi.org/10.1109/TMI.2020.2968472</p><p>Li,M.,Shan,S.,Chandra,S. S.,Liu,F.,&Crozier,S. (2020).Fastgeometricdistortion correction using a deep neural network: Implementation for the 1 Tesla MRI-Linac system. Medical Physics, 47(9), 43034315. https://doi.org/10.1002/mp.14382</p><p>Li,T., Sahu,A. K.,Talwalkar,A., & Smith,V. (2020).Federated learning:Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 50 60. https://doi.org/10.1109/MSP.2020.2975749</p><p>Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2,429450.</p><p>Li,W.,&Plested,J. (2019).Pruningconvolutionalneuralnetworkwithdistinctiveness approach. In T. Gedeon, K. W. Wong, & M. Lee (Eds.), Neural Information Processing, Iconip 2019, Pt V (Vol. 1143,pp. 448455).Springer International PublishingAg. https://doi.org/10.1007/978-3-030-36802-9_48</p><p>Li, W., Wang, Z., Sun, W., & Bahrami, S. (2023). An ensemble clustering framework based on hierarchical clustering ensemble selection and clusters clustering. Cybernetics and Systems, 54(5), 741766. https://doi.org/10.1080/01969722.2022.2073704</p><p>Li, Y., He, Z., Gu, X., Xu, H., & Ren, S. (2024).AFedAvg: Communication-efficient federated learning aggregation with adaptive communication frequency and gradient sparse. Journal of Experimental & Theoretical Artificial Intelligence, 36(1),4769. https://doi.org/10.1080/0952813X.2022.2079730</p><p>Li,Y.,Kim,S.,&Sy,E. (2021).A surveyonamazonAlexaattacksurfaces. 2021 IEEE 18th Annual Consumer Communications & Networking Conference. https://doi.org/10.1109/CCNC49032.2021.9369553</p><p>Li,Y.,Li,H.,Xu,G.,Xiang,T.,&Lu,R.(2022).Practicalprivacy-preservingfederated learning in vehicular fog computing. IEEE Transactions on Vehicular Technology, 71(5),46924705. https://doi.org/10.1109/TVT.2022.3150806</p><p>Li,Y., Li,K.,Wang, S., Chen, X., &Wen, D. (2022).Pilot behavior recognition based on multi-modality fusion technology using physiological characteristics. Biosensors-Basel, 12(6),404. https://doi.org/10.3390/bios12060404</p><p>Li,Y.,&Ren,F.(2020).BNNPruning:Pruningbinaryneuralnetworkguidedbyweight flippingfrequency. Proceedings of the Twentyfirst International Symposium on Quality Electronic Design (ISQED 2020), 306310. https://www.webofscience.com/wos/woscc/fullrecord/WOS:000614842000053</p><p>Li, Y., Wang, Y., & Guan, H. (2019). Improve the detection of clustered outliers via outlier score propagation. 2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking,10851091.</p><p>Li, Y., Zhou, Y., Jolfaei,A., Yu, D., Xu, G., & Zheng, X. (2021). Privacy-preserving federated learning framework based on chained secure multiparty computing. IEEE Internet of Things Journal, 8(8), 61786186. https://doi.org/10.1109/JIOT.2020.3022911</p><p>Li, Z. (2022).A personalized privacy-preserving scheme for federated learning. 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms,13521356. https://doi.org/10.1109/EEBDA53927.2022.9744805</p><p>Li, Z., Sharma, V., & Mohanty, S. P. (2020). Preserving data privacy via federated learning:Challengesandsolutions.IEEE Consumer Electronics Magazine,9(3), 816. https://doi.org/10.1109/MCE.2019.2959108</p><p>Lia, D., & Togan, M. (2020). Privacy-preserving machine learning using federated learning and secure aggregation. Proceedings of the 2020 12th International Conference on Electronics, Computers and Artificial Intelligence. https://www.webofscience.com/wos/woscc/fullrecord/WOS:000627393500009</p><p>Liang, F., Yang, Q., Liu, R., Wang, J., Sato, K., & Guo, J. (2022). Semi-synchronous federated learning protocol with dynamic aggregation in internet of vehicles. IEEE Transactions on Vehicular Technology, 71(5), 46774691. https://doi.org/10.1109/TVT.2022.3148872</p><p>Lim, W. Y. B., Huang, J., Xiong, Z., Kang, J., Niyato, D., Hua, X.-S., Leung, C., & Miao, C. (2021). Towards federated learning in UAV-Enabled Internet of vehicles:Amulti-dimensional contract-matching approach. IEEE Transactions on Intelligent Transportation Systems, 22(8), 51405154. https://doi.org/10.1109/TITS.2021.3056341</p><p>Lim, W. Y. B., Xiong, Z., Niyato, D., Huang, J., Hua, X.-S., & Miao, C. (2020). Incentive mechanism design for federated learning in the Internet of vehicles. 2020 IEEE 92nd Vehicular Technology Conference. https://doi.org/10.1109/VTC2020-Fall49728.9348486</p><p>Lin, X., Wu, J., Mumtaz, S., Garg, S., Li, J., & Guizani, M. (2021). Blockchain-based on-demand computing resource trading in IoV-assisted smart city. IEEE Transactions on Emerging Topics in Computing, 9(3), 13731385. https://doi.org/10.1109/TETC.2020.2971831</p><p>Liu, C., Feng, W., Chen, Y., Wang, C.-X., & Ge, N. (2021). Cell-free satellite-UAV networks for 6G wide-area Internet of things. IEEE Journal on Selected Areas in Communications, 39(4), 11161131. https://doi.org/10.1109/JSAC.2020.3018837</p><p>Liu, F., Liu, J., & Feng, Y. (2021). Incremental-data stealth-transmission method in DSSS. Wireless Networks, 27(4), 24412449. https://doi.org/10.1007/s11276021-02590-6</p><p>Liu, J., Xu, H., Wang, L., Xu, Y., Qian, C., Huang, J., & Huang, H. (2023).Adaptive asynchronousfederatedlearninginresource-constrainededgecomputing.IEEE Transactions on Mobile Computing, 22(2), 674690. https://doi.org/10.1109/TMC.2021.3096846</p><p>Liu,J.,Yang,D., Zhou,Y.,Zhang,G.,Xing,G., Liu,Y., Ma,Y.,Terasaki,O.,Yang,S., & Chen, L. (2021). Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction. Angewandte Chemie-International Edition, 60(26), 1447314479. https://doi.org/10.1002/anie.202103398</p><p>Liu, R., & Pan, J. (2024). CRS:Aprivacy-preserving two-layered distributed machine learningframeworkfor IoV.IEEE Internet of Things Journal,11(1),10801095. https://doi.org/10.1109/JIOT.2023.3287799</p><p>Liu,R.W.,Nie,J.,Garg,S.,Xiong,Z.,Zhang,Y.,&Hossain,M.S.(2021).Data-driven trajectory quality improvement for promoting intelligent vessel traffic services in 6G-enabled maritime IoT systems. IEEE Internet of Things Journal, 8(7), 53745385. https://doi.org/10.1109/JIOT.2020.3028743</p><p>Liu,S.,Liu,Z.,Xu,Z.,Liu,W.,&Tian,J. (2023).Hierarchicaldecentralizedfederated learning framework with adaptive clustering: Bloom-filter-based companions choice for learning Non-IID data in IoV. Electronics, 12(18), 3811. https://doi.org/10.3390/electronics12183811</p><p>Liu, X., Ma, Q., & Fu, X. (2014). Mapping a real-time system graphics design model to windows CE. In K. M. Lee, P. Yarlagadda, & Y. M. Lu (Eds.), Progress in Mechatronics and Information Technology, Pts 1 and 2 (Vols. 462463, pp. 920923). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.462-463.920</p><p>Liu,X.,Ma,W.,Yu,J.,Yu,K.,&Xiang,J.(2021).ASecret-sharing-basedsecuritydata aggregationschemein wirelesssensor networks. InZ. Liu,F. Wu,& S. K. Das (Eds.),Wireless Algorithms, Systems, and Applications, WASA 2021, PT II (Vol. 12938, pp. 303313). Springer International Publishing Ag. https://doi.org/10.1007/978-3-030-86130-8_24</p><p>Lo, S. K., Lu, Q., Zhu, L., Paik, H.-Y., Xu, X., & Wang, C. (2022). Architectural patterns for the design of federated learning systems. Journal of Systems and Software, 191,111357. https://doi.org/10.1016/j.jss.2022.111357</p><p>Lu, Y., Huang, X., Zhang, K., Maharjan, S., & Zhang, Y. (2020). Blockchain empoweredasynchronousfederated learningfor securedatasharing in internet of vehicles. IEEE Transactions on Vehicular Technology, 69(4), 42984311. https://doi.org/10.1109/TVT.2020.2973651</p><p>Luo, J., &Wu, S. (2022). Fedsld: Federated learningwith shared label distribution for medical image classification. 2022 IEEE International Symposium on Biomedical Imaging.https://doi.org/10.1109/ISBI52829.2022.9761404</p><p>Luo, X., Zhao, Z., & Peng, M. (2021). Tradeoff between model accuracy and cost for federated learning in the mobile edge computing systems. 2021 IEEE Wireless Communications and Networking Conference Workshops. https://doi.org/10.1109/WCNCW49093.2021.9419985</p><p>Lyu, L., Yu, J., Nandakumar, K., Li, Y., Ma, X., Jin, J., Yu, H., & Ng, K. S. (2020). Towardsfair andprivacy-preservingfederateddeepmodels.IEEE Transactions on Parallel and Distributed Systems, 31(11), 25242541. https://doi.org/10.1109/TPDS.2020.2996273</p><p>Ma, J., Naas, S.-A., Sigg, S., & Lyu, X. (2022). Privacy-preserving federated learning based on multi-key homomorphic encryption. International Journal of Intelligent Systems, 37(9),58805901. https://doi.org/10.1002/int.22818</p><p>Ma, X., Zhou,Y., Wang, L., & Miao, M. (2022). Privacy-preserving Byzantine-robust federated learning. Computer Standards & Interfaces, 80, 103561. https://doi.org/10.1016/j.csi.2021.103561</p><p>Manias,D.M.,&Shami,A.(2021).Makinga casefor federatedlearningintheinternet of vehiclesandintelligenttransportationsystems.IEEE Network, 35(3),8894. https://doi.org/10.1109/MNET.011.2000560</p><p>Mao,Y., Xiao, Z., Lin, C.-T., de Gusmao, P. P. B., Lane, N. D., Zach, C., &Alibeigi,</p><p>M. (2023).Decentralized trainingof 3D lanedetectionwith automaticlabeling using HD maps. 2023 IEEE 97TH Vehicular Technology Conference. https://doi.org/10.1109/VTC2023-Spring57618.2023.10199451</p><p>Matsuda,K., Sasaki,Y., Xiao, C.,& Onizuka,M. (2024).Benchmarkfor personalized federated learning. IEEE Open Journal of the Computer Society, 5, 213. https://doi.org/10.1109/OJCS.2023.3332351</p><p>Matsumoto, M., & Oguchi, M. (2021). Speeding up encryption on IoT devices using homomorphic encryption. 2021 IEEE International Conference on Smart Computing, 270275. https://doi.org/10.1109/SMARTCOMP52413.2021.00059</p><p>Maurya, C., & Chaurasiya, V. K. (2023). Efficient Anonymous batch authentication scheme with conditional privacy in the Internet of Vehicles (IoV) applications. IEEE Transactions on Intelligent Transportation Systems, 24(9), 96709683. https://doi.org/10.1109/TITS.2023.3271355</p><p>McMahan, H. B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. y. (2017). Communication-Efficient Learning of Deep Networks from Decentralized Data (arXiv:1602.05629; Version 2). arXiv. https://doi.org/10.48550/arXiv.1602.05629</p><p>Mehmood, I., Shahid, S., Hussain, H., Khan, I.,Ahmad, S., Rahman, S., Ullah, N., & Huda, S. (2023). A novel approach to improve software defect prediction accuracy using machine learning. IEEE Access, 11, 6357963597. https://doi.org/10.1109/ACCESS.2023.3287326</p><p>Mei, Q., Xiong, H., Chen, J., Yang, M., Kumari, S., & Khan, M. K. (2021). Efficient certificatelessaggregatesignaturewithconditionalprivacypreservationinIoV. IEEE Systems Journal, 15(1), 245256. https://doi.org/10.1109/JSYST.2020.2966526</p><p>Mei, Q., Xiong, H., Zhao, Y., & Yeh, K.-H. (2021). Toward blockchain-enabled IoV with edge computing: Efficient and privacy-preserving vehicular communication and dynamic updating. 2021 IEEE Conference on Dependable and Secure Computing.https://doi.org/10.1109/DSC49826.2021.9346240</p><p>Miao, L., Jiang, D., & Zhang, H. (2023). Wireless secret sharing game for Internet of things. Sustainability, 15(9),7427. https://doi.org/10.3390/su15097427</p><p>Miao, Q., Lin, H., Wang, X., & Hassan, M. M. (2021). Federated deep reinforcement learning based secure data sharing for Internet of things. Computer Networks, 197,108327. https://doi.org/10.1016/j.comnet.2021.108327</p><p>Miglietta, F., Griguolo, G., Bottosso, M., Giarratano, T., Lo Mele, M., Fassan, M., Cacciatore,M.,Genovesi,E.,DeBartolo,D.,Vernaci,G.,Amato,O.,Conte,P., Guarneri, V., & Dieci, M. V. (2021). Evolution of HER2-low expression from primary to recurrent breast cancer. NPJ Breast Cancer, 7(1), 137. https://doi.org/10.1038/s41523-021-00343-4</p><p>Miglietta, F., Griguolo, G., Bottosso, M., Giarratano, T., Lo Mele, M., Fassan, M., Cacciatore,M.,Genovesi,E.,DeBartolo,D.,Vernaci,G.,Amato,O.,Porra, F., Conte,P.,Guarneri,V.,&Dieci,M.V.(2022).HER2-low-positivebreastcancer: Evolution from primary tumor to residual disease after neoadjuvant treatment. NPJ Breast Cancer, 8(1),66. https://doi.org/10.1038/s41523-022-00434-w</p><p>Mills,J.,Hu,J.,& Min,G. (2022).Multi-taskfederated learningfor personaliseddeep neural networks in edge computing. IEEE Transactions on Parallel and Distributed Systems, 33(3), 630641. https://doi.org/10.1109/TPDS.2021.3098467</p><p>Mollah,M. B.,Zhao,J.,Niyato,D.,Guan,Y. L.,Yuen,C.,Sun,S.,Lam,K.-Y.,&Koh, L. H. (2021). Blockchain for the Internet of vehicles towards intelligent transportationsystems:Asurvey. IEEE Internet of Things Journal, 8(6),4157 4185. https://doi.org/10.1109/JIOT.2020.3028368</p><p>Morales,G. D. F.,Bifet,A.,Khan,L.,Gama,J.,&Fan,W. (2016).IoT bigdatastream mining. KDD16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 21192120. https://doi.org/10.1145/2939672.2945385</p><p>Morano, F., Raimondi, A., Pagani, F., Lonardi, S., Salvatore, L., Cremolini, C., Murgioni, S., Randon, G., Palermo, F., Antonuzzo, L., Pella, N., Racca, P., Prisciandaro, M., Niger, M., Corti, F., Bergamo, F., Zaniboni, A., Ratti, M., Palazzo, M., Pietrantonio, F. (2022). Temozolomide followed by combination with low-dose Ipilimumab and Nivolumab in Patients With microsatellite-stable, O<SUP>6</SUP>-Methylguanine-DNA Methyltransferase-Silenced Metastatic Colorectal Cancer: The MAYA trial. Journal of Clinical Oncology, 40(14), 1562-+. https://doi.org/10.1200/JCO.21.02583</p><p>Mothukuri,V.,Parizi,R. M., Pouriyeh,S.,Huang,Y.,Dehghantanha,A.,&Srivastava,G. (2021). A survey on security and privacy of federated learning. Future Generation Computer Systems-the International Journal of Escience,115,619 640. https://doi.org/10.1016/j.future.2020.10.007</p><p>Mugunthan, V., Peraire-Bueno, A., & Kagal, L. (2020). PrivacyFL: A simulator for privacy-preservingandsecurefederatedlearning. CIKM 20: Proceedings ofthe 29th ACM International Conference on Information & Knowledge Management, 30853092. https://doi.org/10.1145/3340531.3412771</p><p>Muhammad, A., Saqib, M., & Song, W.-C. (2021). Sensor virtualization and data orchestration in Internet of vehicles (IoV). In T.Ahmed, O. Festor,Y. GhamriDoudane,J. M. Kang,A. E. Schaeffer-Filho,A. Lahmadi,&E. Madeira(Eds.), 2021 IFIP/IEEE International Symposium on Integrated Network Management (pp. 9981003). https://www.webofscience.com/wos/woscc/summary/08a7d42b-0094-4ad88698-cdc3a1aff1b0-d12d2903/relevance/1</p><p>Muralidhar,N., Islam, M. R., Marwah, M., Karpatne,A., & Ramakrishnan,N. (2018). Incorporatingprior domainknowledgeintodeepneuralnetworks.InN.Abe,H. Liu,C. Pu,X. Hu, N.Ahmed,M. Qiao,Y. Song,D. Kossmann,B. Liu, K. Lee, J. Tang, J. He, & J. Saltz (Eds.), 2018 IEEE International Conference on Big Data (pp. 3645). https://www.webofscience.com/wos/woscc/fullrecord/WOS:00046849930000 9</p><p>Nakayama, A., & Hagiwara, M. (2020). The first quantum error-correcting code for single deletion errors. IEICE Communications Express, 9(4), 100104. https://doi.org/10.1587/comex.2019XBL0154</p><p>Natella, R., Ceccarelli,A., & Ficco, M. (2022). Federated and generative data sharing for data-drivensecurity:Challengesandapproach.InG.Fortino,R.Gravina,A. Guerrieri, & C. Savaglio (Eds.), 2022 IEEE Intl Conf on Dependable, Autonomic And Secure Computing, Intl Conf on Pervasive Intelligence And Computing, Intl Conf on Cloud And Big Data Computing, Intl Conf on Cyber Science and Technology Congress (pp. 410415). https://doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927754</p><p>Naveen, D., & Praveen, K. (2019). PUF authentication using visual secret sharing scheme. 2019 5TH International Conference on Advanced Computing & Communication Systems, 472475. https://doi.org/10.1109/icaccs.2019.8728504</p><p>Nemiwal, M., Gosu,V., Zhang,T. C., & Kumar,D. (2021).Metalorganicframeworks as electrocatalysts: Hydrogen evolution reactions and overall water splitting. International Journal of Hydrogen Energy, 46(17), 1021610238. https://doi.org/10.1016/j.ijhydene.2020.12.146</p><p>Ni,W.,Zhu,S.,Karim,M.M.,Asheralieva,A.,Kang,J.,Xiong,Z.,&Maple,C.(2022). Lagrange coded federated learning (L-CoFL) model for Internet of vehicles. 2022 IEEE 42nd International Conference n Distributed Computing Systems, 864872. https://doi.org/10.1109/ICDCS54860.2022.00088</p><p>NicholsonO, S., Hammell, R. J., Chakraborty, J., & Ali-Gombe, A. (2022). User awarenessand privacyregarding instantgamesonfacebook. InG. Meiselwitz, A. Moallem, P. Zaphiris, A. Ioannou, R. A. Sottilare, J. Schwarz, & X. Fang (Eds.), Hci International 2022Late Breaking Papers: Interaction in New Media, Learning and Games (Vol. 13517, pp. 623641). https://doi.org/10.1007/978-3-031-22131-6_46</p><p>Nie,Z., Su,C., Mao,Y.,& Bian,K. (2022). IoTPass: IoTdatamanagementsystemfor processingtime-seriesdata. 2022 Tenth International Conference on Advanced Cloud and Big Data,288293.https://doi.org/10.1109/CBD58033.2022.00058</p><p>Nilsson,A.,Smith,S.,Ulmt,G.,Gustaysson,E.,&Jirstrand,M.(2018).Aperformance evaluation of federated learning algorithms. DIDL18: Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning, 18. https://doi.org/10.1145/3286490.3286559</p><p>Ning,Z.,Sun,S.,Wang,X.,Guo,L.,Guo,S.,Hu,X.,Hu,B.,&Kwok,R.Y. K.(2022). Blockchain-enabled intelligent transportation systems: A distributed crowdsensing framework. IEEE Transactions on Mobile Computing, 21(12), 42014217. https://doi.org/10.1109/TMC.2021.3079984</p><p>Ning, Z., Zhang, K., Wang, X., Guo, L., Hu, X., Huang, J., Hu, B., & Kwok, R.Y. K. (2021). Intelligent edge computing in Internet of vehicles:Ajoint computation Onan,A.(2022).Bidirectionalconvolutionalrecurrentneuralnetworkarchitecturewith group-wise enhancement mechanism for text sentiment classification. Journal of King Saud University-Computer and Information Sciences,34(5),20982117. https://doi.org/10.1016/j.jksuci.2022.02.025 offloading and caching solution. IEEE Transactions on Intelligent Transportation Systems, 22(4), 22122225. https://doi.org/10.1109/TITS.2020.2997832</p><p>stergrd,P. R. J. (2005).Two newfour-error-correctingbinary codes. Designs Codes and Cryptography, 36(3), 327329. https://doi.org/10.1007/s10623-004-17233</p><p>Pan,B.,Guo,H.,You,X.,&Xu,L. (2022).Privacy ratingof mobileapplicationsbased on crowdsourcing and machine learning. Journal of Global Information Management, 30(3).https://doi.org/10.4018/JGIM.20220701.oa5</p><p>Pan, K., He, D., & Xu, C. (2021). Local model privacy-preserving study forfederated learning.InJ.GarciaAlfaro,S. Li,R. Poovendran,H.Debar,&M.Yung(Eds.), Security and Privacy in Communication Networks, Securecomm 2021, PT I (Vol. 398, pp. 287307). Springer International Publishing Ag. https://doi.org/10.1007/978-3-030-90019-9_15</p><p>Pan, Q., Tong, H., Lv, J., Luo, T., Zhang, Z., Yin, C., & Li, J. (2023). Image segmentation semantic communication over internet of vehicles. 2023 IEEE Wireless Communications And Networking Conference. https://doi.org/10.1109/WCNC55385.2023.10118717</p><p>Pereira, J. W., & Ribeiro, M. X. (2022). Hyperparameter for deep learning applied in mammogram image classification. In L. Shen,A. R. Gonzalez, K. C. Santosh, Z. Lai, R. Sicilia, J. R. Almeida, & B. Kane (Eds.), 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (pp. 9095). IEEE. https://doi.org/10.1109/CBMS55023.2022.00023</p><p>Pillutla,K., Kakade,S. M., & Harchaoui,Z. (2022).RobustAggregationfor federated learning. IEEE Transactions on Signal Processing, 70, 11421154. https://doi.org/10.1109/TSP.2022.3153135</p><p>Pokhrel, S. R., & Choi, J. (2020). Improving TCP performance over WiFi for Internet of vehicles: A federated learning approach. IEEE Transactions on Vehicular Technology, 69(6),67986802. https://doi.org/10.1109/TVT.2020.2984369</p><p>Polap, D., & Wozniak, M. (2022).Ahybridization of distributed policy and heuristic augmentationfor improvingfederatedlearningapproach. Neural Networks,146, 130140. https://doi.org/10.1016/j.neunet.2021.11.018</p><p>Popa,C.-A.(2016).Matrix-Valuedhopfieldneuralnetworks.InL.Cheng,Q.Liu,&A. Ronzhin(Eds.),Advances In Neural Networks -ISNN 2016 (Vol.9719,pp.127 134). Springer International PublishingAg. https://doi.org/10.1007/978-3-31940663-3_15</p><p>Posner, J., Tseng, L., Aloqaily, M., & Jararweh, Y. (2021). Federated learning in vehicular networks: Opportunities and solutions. IEEE Network, 35(2), 152 159.</p><p>Procaccio, L., Bergamo, F., Gatti, M., Chiusole, B., Tierno, G., Bergo, E., Daniel, F., Nappo,F.,Maddalena,G., Rasola, C., Barsotti,G., DeGrandis, M. C., Piva, V. M., Rizzato, M. D., Sergi, G., Brunello,A., Zagonel, V., & Lonardi, S. (2022). The oncological multidimensional prognostic index is a promising decision-making tool:Areal-world analysis in older patients with metastatic colorectal cancer. European Journal of Cancer, 177, 112119. https://doi.org/10.1016/j.ejca.2022.09.023</p><p>Qi, Y., Hossain, M. S., Nie, J., & Li, X. (2021). Privacy-preserving blockchain-based federated learning for traffic flow prediction. Future Generation Computer Systems-The International Journal of Escience, 117, 328337. https://doi.org/10.1016/j.future.2020.12.003</p><p>Rahajoe, A. D. (2019). Forecasting feature selection based on single exponential smoothing using Wrapper method. International Journal of Advanced Computer Science and Applications, 10(6).</p><p>Rajabzadeh, P., &Outtagarts,A. (2023).Federated learningfor distributedNWDAF architecture.InD.Lopez,M.J.Montpetit,W.Cerroni,M.DiMauro,&P.Borylo (Eds.), 2023 26th Conference on Innovation in Clouds, Internet and Networks and Workshops. IEEE. https://doi.org/10.1109/ICIN56760.2023.10073493</p><p>Rao, N. S., Imam, N., Liu, Z., Kettimuthu, R., & Foster, I. (2020). Machine learning methodsfor connectionRTTand lossrateestimationusing MPI measurements under random losses. In S. Boumerdassi, E. Renault, & P. Muhlethaler (Eds.), Machine Learning for Networking (MLN 2019) (Vol. 12081, pp. 154174). Springer International Publishing Ag. https://doi.org/10.1007/978-3-03045778-5_11</p><p>Rasouli, P., & Yu, I. C. (2021). Explainable debugger for black-box machine learning models. 2021 International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN52387.2021.9533944</p><p>Rathee, G., Iqbal, R., & Khelifi, A. (2021). Decision making in internet of vehicles using pervasive trusted computing scheme. Cmc-Computers Materials & Continua, 68(2),27552769. https://doi.org/10.32604/cmc.2021.017000</p><p>Ray, P. P., & Nguyen, K. (2020).A review on blockchain for medical delivery drones in 5G-IoT era: Progress and challenges. 2020 IEEE/Cic International Conference on Communications in China, 2934. https://www.webofscience.com/wos/woscc/fullrecord/WOS:000681582200006</p><p>Reddy,K. R.,& Muralidhar,A. (2023).Machine learning-basedroadsafetyprediction strategiesfor Internetof vehicles(IoV) enabledvehicles:Asystematicliterature review. IEEE Access, 11, 112108112122. https://doi.org/10.1109/ACCESS.2023.3315852</p><p>Ren, H., Cheng, Z., Qin, J., & Lu, R. (2023). Deception attacks on event-triggered distributed consensus estimation for nonlinear systems. Automatica, 154, 111100. https://doi.org/10.1016/j.automatica.2023.111100</p><p>Ren,W.,Tong,X.,Du,J.,Wang,N.,Li,S.C.,Min,G.,Zhao,Z.,&Bashir,A.K.(2021). Privacy-preserving using homomorphic encryption in Mobile IoT systems. Computer Communications, 165, 105111. https://doi.org/10.1016/j.comcom.2020.10.022</p><p>Reunanen, N., Rty, T., & Lintonen, T. (2020). Automatic optimization of outlier detection ensembles using a limited number of outlier examples. International Journal of Data Science and Analytics, 10(4),377394.</p><p>Ribeiro, A. H., & Schon, T. B. (2023). Overparameterized linear regression under adversarial attacks. IEEE Transactions on Signal Processing, 71, 601614. https://doi.org/10.1109/TSP.2023.3246228</p><p>Rodriguez-Barroso, N., Stipcich, G., Jimenez-Lopez, D., Antonio Ruiz-Millan, J., Martinez-Camara, E., Gonzalez-Seco, G., Victoria Luzon, M., Veganzones,M. A., & Herrera, F. (2020). Federated learning anddifferential privacy: Software tools analysis, the Sherpa.ai FL framework and methodological guidelines for preservingdataprivacy. Information Fusion, 64,270292.</p><p>Rossini, P., Stromer-Galley, J., Baptista, E. A., & Veiga de Oliveira, V. (2021). Dysfunctional information sharing on WhatsApp and Facebook: The role of political talk, cross-cutting exposure and social corrections. New Media & Society, 23(8),24302451. https://doi.org/10.1177/1461444820928059</p><p>Russell, J. (2021). Machine learning equity and accuracy in an applied justice setting. 2021 IEEE International Conference on Smart Computing, 215221. https://doi.org/10.1109/SMARTCOMP52413.2021.00050</p><p>Ruzafa-Alcazar, P., Fernandez-Saura, P., Marmol-Campos, E., Gonzalez-Vidal, A., Hernandez-Ramos, J. L., Bernal-Bernabe, J., & Skarmeta, A. F. (2023). Intrusion detection based on privacy-preserving federated learning for the industrialIoT. IEEE Transactions on Industrial Informatics, 19(2),11451154. https://doi.org/10.1109/TII.2021.3126728</p><p>Saha, S., Hota, A., Choudhury, B., Nag, A., & Nandi, S. (2023). NTRU and secret sharing based secure group communication for IoT applications. IEEE Access, 11,117341117350. https://doi.org/10.1109/ACCESS.2023.3325305</p><p>Saiz-Rubio,V.,&Rovira-Mas,F. (2020).From smartfarmingtowardsagriculture5.0: A review on crop data management. Agronomy-Basel, 10(2), 207. https://doi.org/10.3390/agronomy10020207</p><p>Saleem, M. U., & Fan, L. (2023). Private Data synthesis from decentralized non-IID data. 2023 International Joint Conference on Neural Networks. https://doi.org/10.1109/IJCNN54540.2023.10191553</p><p>Saputra,Y. M., Hoang, D. T., Nguyen, D. N., Tran, L.-N., Gong, S., & Dutkiewicz, E. (2023).Dynamicfederatedlearning-basedeconomicframeworkfor Internet-ofvehicles. IEEE Transactions on Mobile Computing, 22(4), 21002115. https://doi.org/10.1109/TMC.2021.3122436</p><p>Sarma, K., Harmon, S., Sanford, T., Roth, H. R., Xu, Z., Tetreault, J., Xu, D., Flores, M. G., Raman,A. G., Kulkarni, R.,Wood, B. J., Choyke,P. L., Priester,A. M., Marks,L. S.,Raman,S. S.,Enzmann,D.,Turkbey,B., Speier,W.,&Arnold,C. W. (2021). Federated learning improves site performance in multicenter deep learning without data sharing. Journal of the American Medical Informatics Association, 28(6),12591264. https://doi.org/10.1093/jamia/ocaa341</p><p>Sassi, M. S. H., & Fourati, L. C. (2020). Investigation on deep learning methods for privacy and security challenges of cognitive IoV. 2020 16th International Wireless Communications & Mobile Computing Conference, 714720. https://www.webofscience.com/wos/woscc/summary/cc118b04-db5c-4087badc-b76fcf08d1de-d0d9445c/relevance/1</p><p>Schak,M., &Gepperth,A. (2019).AStudyon CatastrophicForgetting inDeepLSTM Networks. In I. V. Tetko, V. Kurkova, P. Karpov, & F. Theis (Eds.), Artificial neural networks and machine learningICANN 2019: Deep learning, Pt Ii (Vol. 11728, pp. 714728). Springer International Publishing Ag. https://doi.org/10.1007/978-3-030-30484-3_56</p><p>Searle, R., Gururaj, P., Gaikwad, S., & Kannur, K. (2023). Secure federated machine learningwithflexibletopologyanddistributedprivacycontrols.InM. Blowers, J. Holt, & B. T. Wysocki (Eds.), Disruptive Technologies in Information Sciences VII (Vol. 12542, p. 125420C). Spie-Int Soc Optical Engineering. https://doi.org/10.1117/12.2663767</p><p>Seth,R., Swain,S. K.,& Mishra, S. K. (2018).Singleobjecttracking usingestimation algorithms. 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE), 16.</p><p>Shen, L. (2019). A self-adaptive feedback handoff algorithm based decision tree for Internetof vehicles. Jun Zheng Wei Xiang Pascal Lorenz Shiwen Mao,177.</p><p>Shen, S., Zhu, T., Wu, D., Wang, W., & Zhou, W. (2022). From distributed machine learning to federated learning: In the view of data privacy and security. Concurrency and Computation-Practice & Experience, 34(16). https://doi.org/10.1002/cpe.6002</p><p>Shen, Y., Sowmya, A., Luo, Y., Liang, X., Shen, D., & Ke, J. (2023). A federated learning system for histopathology image analysis with an orchestral stainnormalizationGAN.IEEE Transactions on Medical Imaging,42(7),19691981. https://doi.org/10.1109/TMI.2022.3221724</p><p>Sheng, Y.-B., Zhou, L., & Long, G.-L. (2022). One-step quantum secure direct communication. Science Bulletin, 67(4), 367374. https://doi.org/10.1016/j.scib.2021.11.002</p><p>Shin,J. Y., & Kang,D.-K. (2023).A higher performingDARTSmodel for CIFAR-10. InH.Zaynidinov,M.Singh,U.S.Tiwary,&D. Singh(Eds.), Intelligent Human Computer Interaction (pp. 9599). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-27199-1_10</p><p>Shin, S., Boo, Y., & Sung, W. (2020). Knowledge distillation for optimization of quantized deep neural networks. 2020 IEEE Workshop on Signal Processing Systems, 111116. https://www.webofscience.com/wos/woscc/fullrecord/WOS:000783760500020</p><p>Shobanadevi,A., & Maragatham, G. (2017). Data mining techniques for IoT and big data -A survey. Proceedings of the International Conference on Intelligent Sustainable Systems (ICISS 2017), 6678. https://www.webofscience.com/wos/woscc/summary/32e039cb-7a34-4dafafb7-0a40e9b907db-d12813db/relevance/1</p><p>Shu, W., Yan, Z., Chen, T., Yu, J., & Qian, W. (2022). Information granularity-based incremental feature selection for partially labeled hybrid data. Intelligent Data Analysis, 26(1),3356. https://doi.org/10.3233/IDA-205560</p><p>Singh, D., Tripathi, G., & Jara, A. J. (2014). A survey of Internet-of-things: Future vision, architecture, challenges and services. 2014 IEEE World Forum on Internet of Things, 287292. https://www.webofscience.com/wos/woscc/summary/a9624700-8726-4999b9ab-989086a95985-60cc12c8/relevance/1</p><p>Singh,V.K.,Singh,P.,Karmakar,M.,Leta,J.,&Mayr,P.(2021).Thejournalcoverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics,126(6),51135142.https://doi.org/10.1007/s11192-021-039485</p><p>Song, H. M., Woo, J., & Kim, H. K. (2020). In-vehicle network intrusion detection using deep convolutional neural network. Vehicular Communications, 21, 100198. https://doi.org/10.1016/j.vehcom.2019.100198</p><p>Song, T., Tong, Y., & Wei, S. (2019). Profit Allocation for Federated Learning. In C. Baru,J. Huan,L. Khan,X. H. Hu,R.Ak,Y. Tian,R.Barga,C.Zaniolo,K. Lee, &Y. F.Ye(Eds.), 2019 IEEE International Conference on Big Data (pp. 2577 2586).IEEE. https://doi.org/10.1109/bigdata47090.2019.9006327</p><p>Song, Y., Zheng, Q., Liu, B., & Gao, X. (2023). EEG Conformer: Convolutional Transformer for EEG Decoding and Visualization. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 710719. https://doi.org/10.1109/TNSRE.2022.3230250</p><p>Stoyanova,M.,Nikoloudakis,Y.,Panagiotakis,S.,Pallis,E.,&Markakis,E. K.(2020). ASurveyontheInternetof things(IoT) forensics:Challenges,approaches,and open issues. IEEE Communications Surveys and Tutorials, 22(2), 11911221. https://doi.org/10.1109/COMST.2019.2962586</p><p>Su,X., Huo,Y., Wang,X., & Jing,T. (2023).An enhancingsemi-supervisedfederated learning framework for Internet of vehicles. 2023 IEEE 98th Vehicular Technology Conference, VTC2023-FALL. https://doi.org/10.1109/VTC2023Fall60731.2023.10333466</p><p>Sun,W., Chen, S., Huang,L., So, H. C.,& Xie, M. (2021). Deep convolutionalneural network compression via coupled tensor decomposition. IEEE Journal of Selected Topics in Signal Processing, 15(3), 603616. https://doi.org/10.1109/JSTSP.2020.3038227</p><p>Sun, W., Lei, S., Wang, L., Liu, Z., & Zhang, Y. (2021). Adaptive federated learning and digital twin for industrial Internet of things. IEEE Transactions on Industrial Informatics, 17(8), 56055614. https://doi.org/10.1109/TII.2020.3034674</p><p>Sun,Y.,Chong,N.S.T.,&Ochiai,H.(2021).Informationstealinginfederatedlearning systems based on generative adversarial networks. 2021 IEEE International Conference on Systems, Man, and Cybernetics, 27492754. https://doi.org/10.1109/SMC52423.2021.9658652</p><p>Suzuki, J., Lameh, S. F., &Amannejad,Y. (2021). Using transfer learning in building federated learning models on edge devices. In M. Alsmirat, Y. Jararweh, F. Awaysheh, & M. Aloqaily (Eds.), 2021 Second International Conference on Intelligent Data Science Technologies and Applications (pp. 105113). IEEE. https://doi.org/10.1109/IDSTA53674.2021.9660819</p><p>Szwarcman, D., Civitarese, D., & Vellasco, M. (2019). Quantum-Inspired neural architecture search. 2019 International Joint Conference on Neural Networks. https://www.webofscience.com/wos/woscc/fullrecord/WOS:000530893805128 Takbiri, N., Houmansadr, A., Goeckel, D. L., & Pishro-Nik, H. (2020). Privacy of Dependentusersagainststatisticalmatching.IEEE Transactions on Information Theory, 66(9),58425865. https://doi.org/10.1109/TIT.2020.2985059</p><p>Tang, H., Wu, H., Qu, G., & Li, R. (2023). Double deep Q-network based dynamic framingoffloadinginvehicular edgecomputing.IEEE Transactions on Network Science and Engineering, 10(3), 12971310. https://doi.org/10.1109/TNSE.2022.3172794</p><p>Tang,Z. (2021).Secretsharing-basedIoTtextdataoutsourcing:Asecureandefficient scheme. IEEE Access, 9, 7690876920. https://doi.org/10.1109/ACCESS.2021.3075282</p><p>Taslimasa,H.,Dadkhah,S.,Neto,E.C.P.,Xiong,P.,Ray,S.,&Ghorbani,A.A.(2023). Security issues in Internet of vehicles (IoV):Acomprehensive survey. Internet of Things, 22, 100809. https://doi.org/10.1016/j.iot.2023.100809</p><p>Tawalbeh, L., Muheidat, F., Tawalbeh, M., & Quwaider, M. (2020). IoT privacy and security: Challenges and solutions. Applied Sciences-Basel, 10(12), 4102. https://doi.org/10.3390/app10124102</p><p>Thanh-Tung,H.,&Tran,T.(2020).CatastrophicforgettingandmodecollapseinGANs. 2020 International Joint Conference on Neural Networks. https://www.webofscience.com/wos/woscc/fullrecord/WOS:000626021404087</p><p>Thonglek, K., Takahashi, K., Ichikawa, K., Nakasan, C., Leelaprute, P., & Iida, H. (2022). Sparse communication for federated learning. In L. Mashayekhy, S. Schulte,V.Cardellini,B.Kantarci,Y.Simmhan,&B.Varghese(Eds.), 6th IEEE International Conference on Fog and Edge Computing (ICFEC 2022) (pp. 1 8).IEEEComputer Soc. https://doi.org/10.1109/ICFEC54809.2022.00008</p><p>Timofeev, A. L., & Sultanov, A. K. (2019). Holographic method of error-correcting coding.InV.A.Andreev,A.V. Bourdine,V.A. Burdin,O. G. Morozov,&A. H. Sultanov (Eds.), Optical Technologies for Telecommunications 2018 (Vol. 11146, p. 111461A). Spie-Int Soc Optical Engineering. https://doi.org/10.1117/12.2526922</p><p>Trien,L.T.,&Yamao,Y.(2018).Informationdeliverydelayreductionbyrelay-assisted broadcast transmission for ITS V2V communications. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, E101A(9),12901297. https://doi.org/10.1587/transfun.E101.A.1290</p><p>Tseng,S.-P.,Lin,J.-Y., Cheng,W.-C.,Yeh, L.-Y.,& Shen,C.-Y. (2022).Decentralized federated learning with enhanced privacy preservation. 2022 IEEE International Conference on Multimedia and Expo Workshops. https://doi.org/10.1109/ICMEW56448.2022.9859507</p><p>Tuli, S., Ilager, S., Ramamohanarao, K., & Buyya, R. (2022). Dynamic scheduling for stochasticedge-cloudcomputingenvironments usingA3C learningandresidual recurrent neural networks. IEEE Transactions on Mobile Computing, 21(3), 940954. https://doi.org/10.1109/TMC.2020.3017079</p><p>Uprety,A., Rawat, D. B., & Li,J. (2021). Privacy preservingmisbehavior detection in iov using federated machine learning. 2021 IEEE 18th Annual Consumer Communications & Networking Conference, 16.</p><p>Uttley,L.,Quintana,D.S.,Montgomery,P.,Carroll,C.,Page,M.J.,Falzon,L.,Sutton, A., & Moher, D. (2023). The problems with systematic reviews: A living systematic review. Journal of Clinical Epidemiology, 156, 3041. https://doi.org/10.1016/j.jclinepi.2023.01.011</p><p>Valizadeh,M.(2021).UsingGooglekeyboardinL2Writing:ImpactsonLexicalerrors reduction. Journal of Language Teaching and Learning, 11(2),6180. Verbraeken,J.,Wolting,M.,Katzy,J.,Kloppenburg,J.,Verbelen,T.,&Rellermeyer,J. S. (2020).ASurvey on distributed machinelearning. ACM Computing Surveys, 53(2),30. https://doi.org/10.1145/3377454 Vladimirov, S. S., Karavaev, D.A., Stepanov,A. I., Yurchenko, M.A., & Vladyko,A. G. (2019).An application of LoRa technology for SD-IoVvetwork. 2019 11th International Congress on Ultra Modern Telecommunications And Control Systems And Workshops. https://doi.org/10.1109/icumt48472.2019.8970938</p><p>Wainakh,A., Guinea,A. S., Grube, T., & Muhlhauser, M. (2020). Enhancing privacy via hierarchical federated learning. 2020 IEEE European Symposium on Security and Privacy Workshops, 344347. https://doi.org/10.1109/EuroSPW51379.2020.00053</p><p>Wang, F., Li, G., Wang, Y., Rafique, W., Khosravi, M. R., Liu, G., Liu, Y., & Qi, L. (2023). Privacy-aware traffic flow prediction based on multi-party sensor data with zero trust in smart city. ACM Transactions on Internet TECHNOLOGY, 23(3),44. https://doi.org/10.1145/3511904</p><p>Wang, F., Wei, W., & Liang, J. (2022). A group incremental approach for feature selection on hybrid data. Soft Computing, 26(8), 36633677. https://doi.org/10.1007/s00500-022-06838-x</p><p>Wang, G., Xu, F., Zhang, H., & Zhao, C. (2022). Joint resource management for mobilitysupportedfederatedlearninginInternetof Vehicles.Future Generation Computer Systems, 129,199211. https://doi.org/10.1016/j.future.2021.11.020</p><p>Wang, H., Wang, L., & Shen, J. (2022). Logit calibration for non-IID and long-tailed data in federated learning. 2022 IEEE Intl Conf on Parallel & Distributed Processing With Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking, 782789. https://doi.org/10.1109/ISPA-BDCloud-SocialComSustainCom57177.2022.00105</p><p>Wang,J.,Cao,B.,Yu,P. S.,Sun,L.,Bao,W.,&Zhu,X. (2018).Deep learningtowards mobile applications. 2018 IEEE 38th International Conference on Distributed Computing Systems,13851393. https://doi.org/10.1109/ICDCS.2018.00139</p><p>Wang, J., Liu, Q., Liang, H., Joshi, G., & Poor, H. V. (2020). Tackling the objective inconsistency problem in heterogeneous federated optimization. Advances in Neural Information Processing Systems, 33,76117623.</p><p>Wang,J.,Zhu,K.,&Hossain,E.(2022).GreenInternetof vehicles(IoV) inthe6Gera: Toward sustainable vehicular communications and networking. IEEE Transactions on Green Communications and Networking, 6(1), 391423. https://doi.org/10.1109/TGCN.2021.3127923</p><p>Wang, K., Qi, X., & Liu, H. (2019). Photovoltaic power forecasting based LSTMconvolutional network. Energy, 189, 116225. https://doi.org/10.1016/j.energy.2019.116225</p><p>Wang, N., Chang, H., & Zhang, D. (2021). Efficient uncertainty quantification for dynamic subsurface flow with surrogate by theory-guided neural network. Computer Methods in Applied Mechanics and Engineering, 373, 113492. https://doi.org/10.1016/j.cma.2020.113492</p><p>Wang, P., He, R., Zhang, Q., Wang, J., Mihaylova, L., & Bouaynaya, N. C. (2020). Bayesian neural networks uncertainty quantification with cubature rules. 2020 International Joint Conference on Neural Networks. https://www.webofscience.com/wos/woscc/fullrecord/WOS:000626021404120</p><p>Wang,R., Li, Z.,Cao, J., Chen,T., &Wang,L. (2019).Convolutional recurrentneural networksfor textclassification. 2019 International Joint Conference on Neural Networks. https://www.webofscience.com/wos/woscc/summary/f500a5ac2871-4481-8269-0b7beb6da9cf-d13141d0/relevance/1</p><p>Wang, S., Liu, F., & Xia, H. (2021). Content-based vehicle selection and resource allocation for federated learning in IoV. 2021 IEEE Wireless Communications and Networking Conference Workshops. https://doi.org/10.1109/WCNCW49093.2021.9419986</p><p>Wang,X.,Che,M.,&Wei,Y. (2020).Tensor neuralnetworkmodelsfor tensor singular value decompositions. Computational Optimization and Applications, 75(3), 753777. https://doi.org/10.1007/s10589-020-00167-1</p><p>Wang,X.,Fan,W.,Hu,X.,He,J.,&Chi,C.-H. (2023).Differentialprivacy-preserving of multi-party collaboration under federated learning in data center networks. IEEE Transactions on Emerging Topics in Computational Intelligence. https://doi.org/10.1109/TETCI.2023.3341299</p><p>Wang, X., Li, Y., Li, Y., Zhang, H., & Li, B. (2018). Collaborative filtering and data privacy protection: Overview and challenges. 2018 IEEE International Conference on Smart Cloud,218223.</p><p>Wang, X., Zhu, Y., Han, S., Yang, L., Gu, H., & Wang, F.-Y. (2022). Fast and progressive misbehavior detection in Internet of vehicles based on broad learning and incremental learning systems. IEEE Internet of Things Journal, 9(6),47884798. https://doi.org/10.1109/JIOT.2021.3109276</p><p>Wang,Y.,Xiong,L.,Niu,X.,Wang,Y.,&Liang,D.(2022).Afederatedlearningbased privacy-preservingdatasharing schemefor Internetof vehicles. In E.Ahene& F. Li (Eds.), Frontiers in Cyber Security, FCS 2022 (Vol. 1726, pp. 1833). Springer International Publishing Ag. https://doi.org/10.1007/978-981-198445-7_2</p><p>Wang, Z., Yan, B., & Yao, Y. (2021). Blockchain empowered federated learning for medical data sharing model. In Z. Liu, F. Wu, & S. K. Das (Eds.), Wireless Algorithms, Systems, and Applications, Wasa 2021, Pt Iii (Vol. 12939,pp. 537 544). Springer International PublishingAg. https://doi.org/10.1007/978-3-03086137-7_57</p><p>Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F., Jin, S., Quek, T. Q. S., & Vincent Poor, H. (2020). Federated learning with differential privacy: Algorithms and performance analysis. IEEE Transactions on Information Forensics And Security, 15, 34543469. https://doi.org/10.1109/TIFS.2020.2988575</p><p>Wright,S.A.(2019).PrivacyinIoTblockchains:Withbigdatacomesbigresponsibility. In C. Baru, J. Huan, L. Khan, X. H. Hu, R.Ak,Y. Tian, R. Barga, C. Zaniolo, K.Lee,&Y.F.Ye(Eds.),2019 IEEE International Conference on Big Data (pp. 52825291). IEEE. https://www.webofscience.com/wos/woscc/summary/2df1549b-7f9b-4b38b849-fc2bdfecdc8a-d1288fc0/relevance/1</p><p>Wu, B., Wang, D., Zhao, G., Deng, L., & Li, G. (2020). Hybrid tensor decomposition in neural network compression. Neural Networks, 132, 309320. https://doi.org/10.1016/j.neunet.2020.09.006</p><p>Wu, D., Pan, M., Xu, Z., Zhang, Y., & Han, Z. (2020). Towards efficient secure aggregation for model update in federated learning. 2020 IEEE Global Communications Conference. https://doi.org/10.1109/GLOBECOM42002.2020.9347960</p><p>Wu, J., Chen, X., Zhang, L., Zhou, S., & Wang, D. (2022).A multi-secret reputation adjustment method in the secret sharing for internet of vehicles. Security and Communication Networks, 2022, 1413976. https://doi.org/10.1155/2022/1413976</p><p>Wu, L., Jin,Y., & Hao, K. (2023). Optimized compressed sensing for communication efficient federated learning. Knowledge-Based Systems, 278, 110805. https://doi.org/10.1016/j.knosys.2023.110805</p><p>Wu,Q.,Liu,L.,&Xue,S. (2022).Global updateguided federatedlearning.In Z. Li&J. Sun (Eds.), 2022 41st Chinese Control Conference (pp. 24342439). IEEE. https://www.webofscience.com/wos/woscc/summary/d2a9e4b4-d4b3-4a289d72-cd6db7732996-d130855f/relevance/1</p><p>Wu, T., Jiang, M., Han, Y., Yuan, Z., Li, X., & Zhang, L. (2021). A traffic-aware federated imitation learning framework for motion control at unsignalized intersections with internet of vehicles. Electronics, 10(24), 3050. https://doi.org/10.3390/electronics10243050</p><p>Xiao,J.,Du, C., Duan,Z.,&Guo,W. (2021). A novelserver-sideaggregationstrategy for federated learning in Non-IID situations. In R. Potolea, B. Iancu, & R. R. Slavescu (Eds.), 2021 20th International Symposium on Parallel and Distributed Computing (pp. 1724). IEEE. https://doi.org/10.1109/ISPDC52870.2021.9521631</p><p>Xiao, W., Xue, J., Miao, Y., Li, Z., Chen, C., Wu, M., Li, W., & Zhou, L. (2020). Distributed graph computation meets machine learning. IEEE Transactions on Parallel and Distributed Systems, 31(7), 15881604. https://doi.org/10.1109/TPDS.2020.2970047</p><p>Xiaoqi,Q.,Xiaoqin,L.,Chao,M.,&Kang,M.(2021).Asummaryof researchprogress of singleimagetoremoverainandfog basedondeep learning. In J. Su,J. Chu, H. Jiang, & Q. Yu (Eds.), Seventh Symposium on Novel Photoelectronic Detection Technology and Applications (Vol. 11763,p. 117631T).Spie-Int Soc OpticalEngineering. https://doi.org/10.1117/12.2586305</p><p>Xie,Y.,Bhojwani,R.,Shekhar,S.,&Knight,J. (2018).An unsupervisedaugmentation framework for deep learning based geospatial object detection:Asummary of results. In F. BanaeiKashani, E. Hoel, R. H. Guting, R. Tamassia, & L. Xiong (Eds.), 26th ACM Sigspatial International Conference on Advances in Geographic Information Systems (ACM Sigspatial Gis 2018) (pp. 349358). AssocComputing Machinery. https://doi.org/10.1145/3274895.3274901</p><p>Xu, C., Qu, Y., Luan, T. H. H., Eklund, P. W. W., Xiang, Y., & Gao, L. (2023). An efficient and reliable asynchronous federated learning scheme for smart public transportation. IEEE Transactions on Vehicular Technology, 72(5),65846598. https://doi.org/10.1109/TVT.2022.3232603</p><p>Xu, G., Li, H., Liu, S., Yang, K., & Lin, X. (2020). VerifyNet: Secure and verifiable federated learning. IEEE Transactions on Information Forensics and Security, 15,911926. https://doi.org/10.1109/TIFS.2019.2929409</p><p>Xu, G., Li, H., Zhang,Y., Xu, S., Ning, J., & Deng, R. H. (2022). Privacy-Preserving federateddeeplearningwithirregular users.IEEE Transactions on Dependable And Secure Computing, 19(2), 13641381. https://doi.org/10.1109/TDSC.2020.3005909</p><p>Xu, H., Zhang, L., Li, P., & Zhu, F. (2022). Outlier detection algorithm based on k-nearest neighbors-local outlier factor. Journal of Algorithms & Computational Technology, 16,17483026221078111.</p><p>Xu, J., Glicksberg, B. S., Su, C., Walker, P., Bian, J., & Wang, F. (2021). Federated learningfor healthcareinformatics.Journal of Healthcare Informatics Research, 5(1),119. https://doi.org/10.1007/s41666-020-00082-4</p><p>Xu, J., Yu, F. R., Wang, J., Qi, Q., Sun, H., & Liao, J. (2021). Capsule network distributed learning with multi-access edge computing for the Internet of vehicles. IEEE Communications Magazine, 59(8), 5257. https://doi.org/10.1109/MCOM.001.2001130</p><p>Xu, L., Wang, H., & Gulliver, T. A. (2021). Outage probability performance analysis andpredictionfor mobileIoVnetworksbasedonICS-BPneuralnetwork.IEEE Internet of Things Journal, 8(5), 35243533. https://doi.org/10.1109/JIOT.2020.3023694</p><p>Xu,L.,Zhou,X.,Khan,M.A., Li,X.,Menon,V. G.,&Yu,X. (2022).Communication quality prediction for Internet of vehicle (IoV) networks:An Elman approach. IEEE Transactions on Intelligent Transportation Systems,23(10),1964419654. https://doi.org/10.1109/TITS.2021.3088862</p><p>Xu, X., Fang, Z., Zhang, J., He, Q., Yu, D., Qi, L., & Dou, W. (2021). Edge content caching with deep spatiotemporal residual network for IoVin smart city. ACM Transactions on Sensor Networks, 17(3),29. https://doi.org/10.1145/3447032</p><p>Xu, X., Jiang, Q., Zhang, P., Cao, X., Khosravi, M. R.,Alex, L. T., Qi, L., & Dou, W. (2022). Game theory for distributed IoV Task offloading with fuzzy neural network in edge computing. IEEE Transactions on Fuzzy Systems, 30(11), 45934604. https://doi.org/10.1109/TFUZZ.2022.3158000</p><p>Xu,X.,Li,H.,Xu,W.,Liu,Z.,Yao,L.,&Dai,F.(2022).Artificialintelligencefor edge service optimization in Internet of vehicles: A survey. Tsinghua Science and Technology, 27(2),270287. https://doi.org/10.26599/TST.2020.9010025</p><p>Xu, X., Liu, W., Zhang, Y., Zhang, X., Dou, W., Qi, L., & Bhuiyan, M. Z. A. (2022). PSDF:Privacy-awareIoVservicedeploymentwithfederatedlearningincloudedge computing. ACM Transactions on Intelligent Systems and Technology, 13(5),70. https://doi.org/10.1145/3501810</p><p>Xu,Z.,Liang,W.,Li,K.-C.,Xu,J.,&Jin,H. (2021).Ablockchain-basedroadsideunitassisted authentication and key agreement protocol for Internet of vehicles. Journal of Parallel and Distributed Computing, 149, 2939. https://doi.org/10.1016/j.jpdc.2020.11.003</p><p>Yang, J., Zhang, Q., Liu, K., Jin, P., & Zhao, G. (2020). Federated learning in big data application and sharing. In A. J. TallonBallesteros (Ed.), Fuzzy Systems and Data Mining VI (Vol. 331, pp. 423435). IOS Press. https://doi.org/10.3233/FAIA200721</p><p>Yang, P., Yan, M., Cui, Y., He, P., Wu, D., Wang, R., & Chen, L. (2022). FedDD: Federated double distillation in IoV. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-FALL). https://doi.org/10.1109/VTC2022Fall57202.2022.10012798</p><p>Yang, P., Yan, M., Cui, Y., He, P., Wu, D., Wang, R., & Chen, L. (2023). Communication-efficient federated double distillation in IoV. IEEE Transactions on Cognitive Communications and Networking, 9(5),13401352. https://doi.org/10.1109/TCCN.2023.3286665</p><p>Yang,Q.,Gu,Y.,&Wu,D. (2019).Surveyof incrementallearning. Proceedings of the 2019 31st Chinese Control and Decision Conference (Ccdc 2019), 399404. https://www.webofscience.com/wos/woscc/summary/02036375-6ee9-42a19769-59a445657af6-5445d248/relevance/1</p><p>Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology, 10(2),119. https://doi.org/10.1145/3298981</p><p>Ye, D., Yu, R., Pan, M., & Han, Z. (2020). Federated learning in vehicular edge computing:A selective model aggregation approach. IEEE Access, 8, 23920 23935.</p><p>Yin,K.-L.,Pu,Y.-F.,&Lu,L.(2020).Hermitefunctionallinkartificial-neural-networkassisted adaptive algorithms for IoV nonlinear active noise control. IEEE Internet of Things Journal, 7(9), 83728383. https://doi.org/10.1109/JIOT.2020.2989761</p><p>Yin,X., Ma,L., Sun,P., &Tan,X. (2021).Avisualfingerprintupdatealgorithmbased on crowdsourced localizationand deeplearningfor smartIoV. Eurasip Journal on Advances In Signal Processing,2021(1),84.https://doi.org/10.1186/s13634021-00795-7</p><p>You,X.,Liu, X., Jiang,N., Cai,J.,&Ying,Z. (2023).Reschedule gradients:Temporal non-IID resilient federated learning. IEEE Internet of Things Journal, 10(1), 747762. https://doi.org/10.1109/JIOT.2022.3203233</p><p>Yu,B., Mao,W., Lv,Y.,Zhang,C.,&Xie,Y. (2022).Asurveyonfederated learningin data mining. Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery, 12(1),e1443. https://doi.org/10.1002/widm.1443</p><p>Yu,H., Liu, Z., Liu,Y., Chen,T., Cong, M., Weng,X., Niyato, D., &Yang, Q. (2020). A fairness-aware incentive scheme for federated learning. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society,393399.</p><p>Yu, H., Zhang, H.,Yu, X., Du, X., & Guizani, M. (2021). PGRide: Privacy-preserving group ridesharing matching in online ride hailing services. IEEE Internet of Things Journal, 8(7),57225735. https://doi.org/10.1109/JIOT.2020.3030274</p><p>Yu, Z., Cui,Y., Yu, J., Wang, M., Tao, D., & Tian, Q. (2020). Deep multimodal neural architecture search. Mm 20: Proceedings of the 28th Acm International Conference on Multimedia, 37433752. https://doi.org/10.1145/3394171.3413977</p><p>Zaminpardaz, S., & Teunissen, P. J. G. (2017). Analysis of Galileo IOV plus FOC signals and E5 RTK performance. GPS Solutions, 21(4), 18551870. https://doi.org/10.1007/s10291-017-0659-9</p><p>Zavvos, E., Gerding, E. H.,Yazdanpanah, V., Maple, C., Stein, S., & Schraefel, M. C. (2022). Privacy and trust in the Internet of vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(8), 1012610141. https://doi.org/10.1109/TITS.2021.3121125</p><p>Zeng,S., Mi,B.,&Huang,D. (2023). Emergency vehicleidentificationfor Internetof vehicles based on federated learning and homomorphic encryption. In M. Sun &Z. Chen(Eds.), 2023 IEEE 12th Data Driven Control and Learning Systems Conference (pp. 208213). IEEE. https://doi.org/10.1109/DDCLS58216.2023.10166254</p><p>Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., & Gao, Y. (2021). A survey on federated learning. Knowledge-Based Systems, 216, 106775. https://doi.org/10.1016/j.knosys.2021.106775</p><p>Zhang, D., Shi, W., St-Hilaire, M., & Yang, R. (2022). Multiaccess edge integrated networking for Internet of vehicles: A blockchain-based deep compressed cooperativelearningapproach.IEEE Transactions on Intelligent Transportation Systems, 115. https://doi.org/10.1109/TITS.2022.3183927</p><p>Zhang, J., & Letaief, K. B. (2020). Mobile edge intelligence and computing for the Internet of vehicles. Proceedings of the IEEE, 108(2), 246261. https://doi.org/10.1109/JPROC.2019.2947490</p><p>Zhang, J., Wang, C., & Li, S. (2024). Differential private knowledge trading in vehicular federated learning using contract theory. Knowledge-Based Systems, 285,111356. https://doi.org/10.1016/j.knosys.2023.111356</p><p>Zhang, J., Xin, Y., Wang, Y., Lei, X., & Yang, Y. (2023). A Secure energy Internet schemefor IoVbasedonpost-quantumblockchain.CMC-Computers Materials & Continua, 75(3),63236336. https://doi.org/10.32604/cmc.2023.034668</p><p>Zhang, S., Liu, X., Zhang, M., & Wo, T. (2017). PaIndex:An online index system for vehicle trajectory data exploiting parallelism. 2017 4th International Conference on Systems and Informatics, 696703. https://www.webofscience.com/wos/woscc/summary/014928ec-7f74-44a49b51-2eb56cb85528-d12f4e95/relevance/1</p><p>Zhang,T.,Zhang,D.,Yan,H.,Qiu,J.,&Gao,J. (2021).Anewmethodof datamissing estimationwithFNN-basedtensor heterogeneousensemblelearningfor internet of vehicle. Neurocomputing, 420, 98110. https://doi.org/10.1016/j.neucom.2020.09.042</p><p>Zhang, Y., Zhang, L., Wu, Q., & Mu, Y. (2022). Blockchain-enabled efficient distributedattribute-basedaccesscontrolframeworkwithprivacy-preservingin IoV. Journal of King Saud University-Computer and Information Sciences, 34(10),92169227. https://doi.org/10.1016/j.jksuci.2022.09.004</p><p>Zhang,Y.,Zhao,P.,Zhao,Y.,Yan,Z.,& Li, B.(2018). Themodelresearchon location fusion algorithm with big data selection and accuracy correction. DEStech Transactions on Computer Science and Engineering,(Wicom).</p><p>Zhao,B.,Liu,X.,Chen,W.-N.,&Deng,R.H.(2023).CROWDFL:Privacy-preserving mobile crowdsensing system via federated learning. IEEE Transactions on Mobile Computing, 22(8), 46074619. https://doi.org/10.1109/TMC.2022.3157603</p><p>Zhao, F., Zhao, L., Wang, L., & Song, H. (2020). An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion. Expert Systems with Applications, 160, 113678. https://doi.org/10.1016/j.eswa.2020.113678</p><p>Zhao, Y., Zhao, J., Yang, M., Wang, T., Wang, N., Lyu, L., Niyato, D., & Lam, K.-Y. (2020).Localdifferentialprivacy-basedfederatedlearningfor internetof things. IEEE Internet of Things Journal, 8(11),88368853.</p><p>Zheng,T.,Li,A.,Chen,Z.,Wang,H.,&Luo,J. (2023).AutoFed:Heterogeneity-aware federated multimodal learning for robust autonomous driving. Proceedings of the 29th Annual International Conference on Mobile Computing and Networking, MOBICOM 2023, 209223. https://doi.org/10.1145/3570361.3592517</p><p>Zhou,A.,Jiang,N., &Tang,T. (2024). Asynchronous robustaggregationmethodwith privacy protection for IoV federated learning. World Electric Vehicle Journal, 15(1),18. https://doi.org/10.3390/wevj15010018</p><p>Zhou, D.-X. (2020). Universality of deep convolutional neural networks. Applied and Computational Harmonic Analysis, 48(2), 787794. https://doi.org/10.1016/j.acha.2019.06.004</p><p>Zhou,H.,Xu,W.,Chen,J.,&Wang,W.(2020).EvolutionaryV2Xtechnologiestoward theInternetof vehicles:Challengesandopportunities. Proceedings of the IEEE, 108(2),308323.</p><p>Zhou, Z., Gao, C., Xu, C., Zhang,Y., Mumtaz, S., & Rodriguez, J. (2018).Social bigdata-basedcontentdisseminationinInternetof vehicles. IEEE Transactions on Industrial Informatics, 14(2), 768777. https://doi.org/10.1109/TII.2017.2733001</p><p>Zhou,Z.,Tian,Y.,&Peng,C.(2021).Privacy-preservingfederatedlearningframework with general aggregation and multiparty entity matching. Wireless Communications & Mobile Computing, 2021, 6692061. https://doi.org/10.1155/2021/6692061</p><p>Zhu, J., & Liu, W. (2020). A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics, 123(1), 321335. https://doi.org/10.1007/s11192-020-03387-8</p><p>Zhu, M., Chen, Z., Chen, K., Lv, N., & Zhong, Y. (2022).Attention-based federated incrementallearningfor trafficclassificationintheInternetof things.Computer Communications, 185, 168175. https://doi.org/10.1016/j.comcom.2022.01.006</p><p>Zhu, X., Wang, J., Hong, Z., Xia, T., & Xiao, J. (2019). Federated learning of unsegmented Chinese text recognition model. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence, 13411345. https://doi.org/10.1109/ICTAI.2019.00186</p><p>Zhuang,W.,Ye,Q.,Lyu,F.,Cheng,N.,&Ren,J.(2020).SDN/NFV-empoweredfuture IoV With enhanced communication, computing, and caching. Proceedings of the IEEE, 108(2),274291. https://doi.org/10.1109/JPROC.2019.2951169</p><p>Zou, S., Xiao, M., Xu, Y., An, B., & Zheng, J. (2021). FedDCS: Federated Learning framework based on dynamic client selection. 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems, 627632. https://doi.org/10.1109/MASS52906.2021.00090</p><p>Zucchetta, P., Branchini, M., Zorz,A., Bodanza, V., Cecchin, D., Paiusco, M., & Bui, F. (2019).Quantitativeanalysisof imagemetricsfor reduced andstandarddose pediatric <SUP>18</SUP>F-FDG PET/MRI examinations. British Journal of Radiology, 92(1095),20180438. https://doi.org/10.1259/bjr.20180438</p><p></p>
spellingShingle QA Mathematics
Lei, Yuan
An optimized federated learning framework for internet of vehicles based on noise data and incremental data processing
thesis_level PhD
title An optimized federated learning framework for internet of vehicles based on noise data and incremental data processing
title_full An optimized federated learning framework for internet of vehicles based on noise data and incremental data processing
title_fullStr An optimized federated learning framework for internet of vehicles based on noise data and incremental data processing
title_full_unstemmed An optimized federated learning framework for internet of vehicles based on noise data and incremental data processing
title_short An optimized federated learning framework for internet of vehicles based on noise data and incremental data processing
title_sort optimized federated learning framework for internet of vehicles based on noise data and incremental data processing
topic QA Mathematics
url https://ir.upsi.edu.my/detailsg.php?det=12869
work_keys_str_mv AT leiyuan anoptimizedfederatedlearningframeworkforinternetofvehiclesbasedonnoisedataandincrementaldataprocessing
AT leiyuan optimizedfederatedlearningframeworkforinternetofvehiclesbasedonnoisedataandincrementaldataprocessing