Preparation, characterisation and effectiveness of essential oil-encapsulated biopolymer based nanoemulsions as mosquito spray formulations for fabric finishes

Bibliographic Details
Main Author: Nurul Nabila Aini Abdullah
Format: Thesis
Language:English
Published: 2024
Subjects:
Online Access:https://ir.upsi.edu.my/detailsg.php?det=13266
Abstract Abstract here
_version_ 1855626368175308800
author Nurul Nabila Aini Abdullah
author_facet Nurul Nabila Aini Abdullah
author_sort Nurul Nabila Aini Abdullah
description
format Thesis
id upsi-13266
institution Universiti Pendidikan Sultan Idris
language English
publishDate 2024
record_format sWADAH
record_pdf Restricted
spelling upsi-132662025-09-09 Preparation, characterisation and effectiveness of essential oil-encapsulated biopolymer based nanoemulsions as mosquito spray formulations for fabric finishes 2024 Nurul Nabila Aini Abdullah QD Chemistry <p>This research was conducted to prepare, characterise and determine the effectiveness of nanoemulsion formulations consisting of biopolymers and plant essential oils. Anionic tragacanth gum and cationic guar gum act as nanocarriers for betel, clove and lemongrass essential oils, which are active ingredients in nanoemulsion systems. The characterisation studies were carried out using Fourier transform infrared (FTIR) spectrometer, thermogravimetric analyser (TGA), differential scanning calorimeter (DSC), high resolution transmission electron microscope (HR-TEM), field emission scanning electron microscope (FESEM), zeta potential and particle size analyser. The ability of nanoemulsion formulations to load and release essential oils in vitro in rainwater was determined using an ultraviolet-visible (UV-Vis) spectrophotometer. The Excito chamber study was performed to evaluate the effectiveness of the fabrics treated with nanoemulsion formulations to repel Aedes aegypti mosquitoes. Based on FTIR analysis, there were changes in absoprtion and prominent peaks that indicate the presence of biopolymers and essential oils functional group in each nanoemulsion formulation, confirming the successful encapsulation of essential oils into nanocarriers. All nanoemulsion formulations exhibit 61% to 96% encapsulation efficiency with a range of -16.8 mV to -55.5 mV zeta potential and 0.21 to 0.74 polydispersity index. Based on effectiveness studies, following 5 cycles of washing and heating, most nanoemulsion formulations were able to retain more than 50% on cotton, while more than 30% of the nanoemulsion formulations retained on polyester. The Excito chamber study shown 60% to 98% of Ae. Aegypti mosquitoes were successfully repelled from cotton, whereas 30% to 90% of mosquitoes were repelled from polyester. In conclusion, both anionic tragacanth gum and cationic guar gum have potential as nanocarriers for essential oils in the development of nanoemulsions for fabric finishes. In implication, the application of biopolymers as alternatives to synthetic binders for fabric finishes could produce eco-friendly mosquito repellent spray formulations.</p> 2024 thesis https://ir.upsi.edu.my/detailsg.php?det=13266 https://ir.upsi.edu.my/detailsg.php?det=13266 text eng N/A openAccess Masters Perpustakaan Tuanku Bainun Fakulti Sains dan Matematik <p>Abbas, M. G., Haris, A., Binyameen, M., Nazir, A., Mozuratis, R., & Azeem, M. (2022). Chemical composition, larvicidal and repellent activities of wild plant essential oils against Aedes aegypti. Biology, 12(1), 8. https://doi.org/10.3390/biology12010008</p><p></p><p>Acosta, E. (2009). Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current opinion in colloid & interface science, 14(1), 3-15. https://doi: 10.1016/j.cocis.2008.01.002</p><p></p><p>Adepu, S., & Ramakrishna, S. (2021). Controlled Drug Delivery Systems: Current status and Future Directions. Molecules, 26(19), 5905. https://doi.org/10.3390/molecules26195905</p><p></p><p>European Centre for Disease Prevention and Control. (2023, January 2). Aedes aegypti - factsheet for experts. https://www.ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-aegypti</p><p></p><p>Afify, A., & Potter, C. J. (2020). Insect repellents mediate species-specific olfactory behaviours in mosquitoes. Malaria Journal, 19(1). https://doi.org/10.1186/s12936-020-03206-8</p><p></p><p>Afify, A., Betz, J. F., Riabinina, O., Lahondere, C., & Potter, C. J. (2019). Commonly used insect repellents hide human odors from anopheles mosquitoes. Current Biology, 29(21). https://doi.org/10.1016/j.cub.2019.09.007</p><p></p><p>Ahari, H., & Nasiri, M. (2021). Ultrasonic technique for production of nanoemulsions for food packaging purposes: A review study. Coatings, 11(7), 847. https://doi.org/10.3390/coatings11070847</p><p></p><p>Aizamddin, M. F., & Mahat, M. M. (2023). Enhancing the washing durability and electrical longevity of conductive polyaniline-grafted polyester fabrics. ACS Omega, 8(41), 37936-37947. https://doi.org/10.1021/acsomega.3c03377</p><p></p><p>Anjum, S., Ishaque, S., Fatima, H., Farooq, W., Hano, C., Abbasi, B. H., & Anjum, I. (2021). Emerging applications of nanotechnology in healthcare systems: Grand Challenges and Perspectives. Pharmaceuticals, 14(8), 707. https://doi.org/10.3390/ph14080707</p><p></p><p>Anoopkumar, A. N., Puthur, S., Varghese, P., Rebello, S., & Aneesh, E. M. (2017). Life cycle, bio-ecology and DNA barcoding of mosquitoes Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse). Journal of Communicable Diseases, 49(3), 32-41. https://doi: 10.24321/0019.5138.201719</p><p></p><p>Antonioli, G., Fontanella, G., Echeverrigaray, S., Longaray Delamare, A. P., Fernandes Pauletti, G., & Barcellos, T. (2020). Poly(lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: In vitro and in vivo evaluation against phytopathogenic fungi. Food Chemistry, 326, 126997. https://doi.org/10.1016/j.foodchem.2020.126997</p><p></p><p>Anwar, F., Abbas, M., Malik, M. H., Cheema, A. A., Tariq, S., Afzal, W., & Khan, A. (2023). Development of mosquito-repellent camouflage fabric using eucalyptus oil with Moringa oleifera gum. ChemEngineering, 7(4), 64. https://doi.org/10.3390/chemengineering7040064</p><p></p><p>Arjunan, N. K., Murugan, K., Rejeeth, C., Madhiyazhagan, P., & Barnard, D. R. (2012). Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector borne and zoonotic diseases (Larchmont, N.Y.), 12(3), 262-268. https://doi.org/10.1089/vbz.2011.0661</p><p></p><p>Asadollahi, A., Khoobdel, M., Zahraei-Ramazani, A., Azarmi, S., & Mosawi, S. H. (2019). Effectiveness of plant-based repellents against different Anopheles species: A systematic review. Malaria Journal, 18(1). https://doi.org/10.1186/s12936-019-3064-8</p><p></p><p>Ashames, A., Ullah, K., Al-Tabakha, M., Khan, S. A., Hassan, N., Mannan, A., Ikram, M., Buabeid, M., & Murtaza, G. (2022). Development, characterization and in-vitro evaluation of guar gum based new polymeric matrices for controlled delivery using metformin HCl as model drug. PLOS ONE, 17(7). https://doi.org/10.1371/journal.pone.0271623</p><p></p><p>Ashokan, A. P., Paulpandi, M., Dinesh, D., Murugan, K., Vadivalagan, C., & Benelli, G. (2017). Toxicity on dengue mosquito vectors through Myristica fragrans-synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HEPG2). Journal of Cluster Science, 28(1), 205-226. https://doi.org/10.1007/s10876-016-1075-y</p><p></p><p>Atanase, L. I. (2022). Nanoemulsions for Drug Delivery. Systems of Nanovesicular Drug Delivery, 17-37. https://doi.org/10.1016/b978-0-323-91864-0.00009-7</p><p></p><p>Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2016). Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Comprehensive reviews in food science and food safety, 15(1), 143-182. https://doi.org/10.1111/1541-4337.12179</p><p></p><p>Balaji, A., Mishra, P., Suresh Kumar, R. S., Mukherjee, A., & Chandrasekaran, N. (2015). Nanoformulation of poly(ethylene glycol) polymerized organic insect repellent by PIT emulsification method and its application for Japanese encephalitis vector control. Colloids and surfaces. B, Biointerfaces, 128, 370-378. https://doi.org/10.1016/j.colsurfb.2015.02.034.</p><p></p><p>Bangar, S. P., Whiteside, W. S., Dunno, K. D., Cavender, G. A., & Dawson, P. (2023). Fabrication and characterization of active nanocomposite films loaded with cellulose nanocrystals stabilized pickering emulsion of clove bud oil. International Journal of Biological Macromolecules, 224, 1576-1587. https://doi.org/10.1016/j.ijbiomac.2022.10.243</p><p></p><p>Barredo, E., & DeGennaro, M. (2020). Not just from blood: Mosquito nutrient acquisition from nectar sources. Trends in Parasitology, 36(5), 473-484. https://doi.org/10.1016/j.pt.2020.02.003</p><p></p><p>Basak, S. (2018). The use of fuzzy logic to determine the concentration of betel leaf essential oil and its potency as a juice preservative. Food Chemistry, 240, 1113-1120. https://doi.org/10.1016/j.foodchem.2017.08.047</p><p></p><p>Benelli, G. (2015). Research in mosquito control: current challenges for a brighter future. Parasitology research, 114(8), 2801-2805. https://doi.org/10.1007/s00436-015-4586-9</p><p></p><p>Bernal-Chavez, S. A., Alcala-Alcala, S., Almarhoon, Z. M., Turgumbayeva, A., Gurer, E. S., De Los Dolores Campos-Echeverria, Ma., Cortes, H., Romero-Montero, A., Del Prado-Audelo, M. L., Sharifi-Rad, J., & Leyva-Gomez, G. (2023). Novel ultra-stretchable and self-healing crosslinked poly (ethylene oxide)-cationic guar gum hydrogel. Journal of Biological Engineering, 17(1). https://doi.org/10.1186/s13036-023-00376-2</p><p></p><p>Bezerra, F. M., Carmona, O. G., Carmona, C. G., Lis, M. J., & de Moraes, F. F. (2016). Controlled release of microencapsulated citronella essential oil on cotton and</p><p>polyester matrices. Cellulose, 23(2), 1459-1470. https://doi.org/10.1007/s10570-016-0882-5</p><p></p><p>Bhatt, L., & Kale, R. D. (2019). Lemongrass (Cymbopogon Flexuosus Steud.) wats treated textile: A control measure against vector-borne diseases. Heliyon, 5(12), 2842. https://doi.org/10.1016/j.heliyon.2019.e02842</p><p></p><p>Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., Wint, G. R., Simmons, C. P., Scott, T. W., Farrar, J. J., & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504-507. https://doi.org/10.1038/nature12060.</p><p></p><p>Bonet-Aracil, M., Bou-Belda, E., Gisbert-Paya, J., & Ibanez, F. (2019). In situ test: Cotton Sheets against Mosquito Bites in India. Cellulose, 26(7), 4655-4663. https://doi.org/10.1007/s10570-019-02395-z</p><p></p><p>Bonnin, L., Tran, A., Herbreteau, V., Marcombe, S., Boyer, S., Mangeas, M., & Menkes, C. (2022). Predicting the effects of climate change on dengue vector densities in Southeast Asia through process-based modeling. Environmental Health Perspectives, 130(12). https://doi.org/10.1289/ehp11068</p><p></p><p>Botifoll, M., Pinto-Huguet, I., & Arbiol, J. (2022). Machine learning in electron microscopy for advanced nanocharacterization: Current developments, available tools and future outlook. Nanoscale Horizons, 7(12), 1427-1477. https://doi.org/10.1039/d2nh00377e</p><p></p><p>Bourbon, A., Goncalves, R., Vicente, A., & Pinheiro, A. (2018). Characterization of Particle Properties in Nanoemulsions. In Nanoemulsions: formulation, applications, and characterization (pp. 519-541). Elsevier.</p><p></p><p>Bruschi, M. L. (2015). Strategies to modify the drug release from Pharmaceutical Systems. Elsevier.</p><p></p><p>Carpenter, J., & Saharan, V. K. (2017). Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization. Ultrasonics Sonochemistry, 35, 422-430. https://doi.org/10.1016/j.ultsonch.2016.10.021</p><p></p><p>Cassau, S., & Krieger, J. (2020). The role of snmps in insect olfaction. Cell and Tissue Research, 383(1), 21-33. https://doi.org/10.1007/s00441-020-03336-0</p><p></p><p>Chan, M. H., Nhi, P. T., & Linh, N. T. (2020). Betel (Piper betel L.) leaf essential oil extraction using steam distillation. International Journal of Advanced Engineering Research and Science, 7(6), 166-169. https://doi.org/10.22161/ijaers.76.20</p><p></p><p>Choi, S. J., McClements, D. J. (2020). Nanoemulsions as delivery systems for lipophilic nutraceuticals: strategies for improving their formulation, stability, functionality and bioavailability. Food Science Biotechnology. 29(2), 149-168. https://doi: 10.1007/s10068-019-00731-4.</p><p></p><p>Chuanfen, P., Wenting, T., Xiaodan, L., Man, L., Qingjie, S., (2018). Stability enhancement efficiency of surface decoration on curcumin-loaded liposomes: Comparison of guar gum and its cationic counterpart, Food Hydrocolloids, 87, 29-37. https://doi: 10.1016/j.foodhyd.2018.07.039</p><p></p><p>Coetzee, D., Militky, J., & Venkataraman, M. (2022). Functional coatings by natural and synthetic agents for insect control and their applications. Coatings, 12(4), 476. https://doi.org/10.3390/coatings12040476</p><p></p><p>Cogan, J. E. (2020, January 22). Dengue And Severe Dengue. World Health Organization. https://www.who.int/en/news-room/fact-sheets/detail/dengue-and-severe-dengue</p><p></p><p>Cortes, H., Hernandez-Parr,a H., Bernal-Chavez, S. A., Prado-Audelo, M. L. D., Caballero-Floran, I. H., Borbolla-Jimenez, F. V., Gonzalez-Torres, M., Magana, J. J., Leyva-Gomez, G. (2021). Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. Materials (Basel). 14(12), 3197. https://doi: 10.3390/ma14123197.</p><p></p><p>Couto, A., Alenius, M., & Dickson, B. J. (2005). Molecular, anatomical and functional organization of the drosophila olfactory system. Current Biology, 15(17), 1535-1547. https://doi.org/10.1016/j.cub.2005.07.034</p><p></p><p>Cuervo-Parra, J. A., Cortes, T. R., & Ramirez-Lepe, M. (2016). Mosquito-borne diseases, pesticides used for mosquito control and development of resistance to insecticides. Insecticides Resistance. https://doi.org/10.5772/61510</p><p>da Pereira, A., Souza C. P. L., Moraes L., Fontes-Sant'Ana G. C., Amaral P. F. F. (2021). Polymers as Encapsulating Agents and Delivery Vehicles of Enzymes. Polymers. 13(23), 4061. https://doi: 10.3390/polym13234061</p><p></p><p>da Silva, M. R., & Ricci-Junior, E. (2020). An approach to natural insect repellent formulations: From basic research to technological development. Acta Tropica, 212, 105419. https://doi.org/10.1016/j.actatropica.2020.105419</p><p></p><p>Das, N. G., Dhiman, S., Talukdar, P. K., Rabha, B., Goswami, D., & Veer, V. (2015). Synergistic mosquito-repellent activity of Curcuma longa, pogostemon heyneanus and Zanthoxylum limonella essential oils. Journal of Infection and Public Health, 8(4), 323-328. https://doi.org/10.1016/j.jiph.2015.02.005</p><p></p><p>Das, S., Debnath, N., Cui, Y., Unrine, J., & Palli, S. R. (2015). Chitosan, Carbon Quantum Dot, and Silica Nanoparticle Mediated dsRNA Delivery for Gene Silencing in Aedes aegypti: A Comparative Analysis. ACS applied materials & interfaces, 7(35), 19530-19535. https://doi.org/10.1021/acsami.5b05232</p><p></p><p>David, M. N. V. & Akhondi, H. (2023 July 30). Emulsions. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK559084/</p><p></p><p>de Oliveira, C. T., & Tavares, M. I. (2022). Antioxidant and cytotoxic activities of clove oil nanoparticles and evaluation of its size and retention efficiency. Materials Sciences and Applications, 13(01), 39-53. https://doi.org/10.4236/msa.2022.131003</p><p></p><p>Debboun, M., Frances, S. P., & Strickman, D. (2015). Insect repellents handbook. CRC Press, Taylor & Francis Group.</p><p></p><p>Debboun, M., Frances, S. P., & Strickman, D. (2014). Insect repellents: Principles, methods, and uses. CRC Press.</p><p></p><p>Deng, S., Gigliobianco, M. R., Censi, R., & Di Martino, P. (2020). Polymeric nanocapsules as nanotechnological alternative for drug delivery system: Current status, challenges and opportunities. Nanomaterials, 10(5), 847. https://doi.org/10.3390/nano10050847</p><p></p><p>Denton, M. J., & Daniels, P. N. (2002). Textile terms and definitions. Textile Institute.</p><p></p><p>Dethier, V. G., & Browne, B. L. (1960). The designation of chemicals in terms of the responses they elicit from insects. Journal of Economic Entomology, 53(1), 134-136. https://doi.org/10.1093/jee/53.1.134</p><p></p><p>Dhavan, P. P., & Jadhav, B. L. (2020). Eco-friendly approach to control dengue vector aedes aegypti larvae with their enzyme modulation by Lumnitzera racemosa fabricated zinc oxide nanorods. SN Applied Sciences, 2(5). https://doi.org/10.1007/s42452-020-2636-0</p><p></p><p>Diaz, J. H. (2016). Chemical and plant-based insect repellents: Efficacy, safety, and toxicity. Wilderness & Environmental Medicine, 27(1), 153-163. https://doi.org/10.1016/j.wem.2015.11.007</p><p></p><p>Do, D. N., Nguyen, D. P., Phung, V.-D., Le, X.-T., Le, T. M., Do, V. M., Minh, B. Q., & Luu, X. C. (2021). Fractionating of lemongrass (Cymbopogon citratus) essential oil by vacuum fractional distillation. Processes, 9(4), 593. https://doi.org/10.3390/pr9040593</p><p></p><p>Drakou, K., Nikolaou, T., Vasquez, M., Petric, D., Michaelakis, A., Kapranas, A., Papatheodoulou, A., & Koliou, M. (2020). The effect of weather variables on mosquito activity: A snapshot of the main point of entry of Cyprus. International Journal of Environmental Research and Public Health, 17(4), 1-10. https:// doi: 10.3390/ijerph17041403</p><p></p><p>El-Aassar, M. R., Ibrahim, O. M., & Al-Oanzi, Z. H. (2021). Biotechnological applications of polymeric nanofiber platforms loaded with diverse bioactive materials. Polymers, 13(21), 3734. https://doi.org/10.3390/polym13213734</p><p></p><p>El-Aila, H. J. (2009). Interaction of nonionic surfactant Triton-X-100 with Ionic surfactants. Journal of Dispersion Science and Technology, 30(9), 1277-1280. https://doi.org/10.1080/01932690902735207</p><p></p><p>Elemike, E., Onwudiwe, D., Ekennia, A., Sonde, C., & Ehiri, R. (2017). Green synthesis of Ag/ag2o nanoparticles using aqueous leaf extract of Eupatorium odoratum and its antimicrobial and mosquito larvicidal activities. Molecules, 22(5), 674. https://doi.org/10.3390/molecules22050674</p><p></p><p>El-Sayed, A. A., Amr, A., Kamel, O. M., El-Saidi, M. M., & Abdelhamid, A. E. (2020). Eco-friendly fabric modification based on AgNPs@Moringa for mosquito repellent applications. Cellulose, 27(14), 8429-8442. https://doi.org/10.1007/s10570-020-03355-8</p><p></p><p>El-Sayed, A. A., Amr, A., Kamel, O. M., El-Saidi, M. M., & Abdelhamid, A. E. (2020). Eco-friendly fabric modification based on AgNPs@Moringa for Mosquito repellent applications. Cellulose, 27(14), 8429-8442. https://doi.org/10.1007/s10570-020-03355-8</p><p></p><p>Elsayed, G. A., & Hassabo, A. G. (2021). Insect repellent of Cellulosic Fabrics (a review). Letters in Applied NanoBioScience, 11(1), 3181-3190. https://doi.org/10.33263/lianbs111.31813190</p><p></p><p>Esmaili, F., Osanloo, M., Amoozegar, F., & Sanei-Dehkordi, A. (2021). A review on the use of essential oil-based nanoformulations in control of mosquitoes. Biointerface Research in Applied Chemistry, 11(5), 12516-12529. https://doi.org/10.33263/briac115.1251612529</p><p></p><p>Fathy K. H., M. Selim, A., A. Abouelella, G., A. Abouelella, N., Murugan, K., P. Vaz, N., & Govindarajan, M. (2019). Commercial mosquito repellents and their safety concerns. Malaria. https://doi.org/10.5772/intechopen.87436</p><p></p><p>Flincec Grgac, S., Tarbuk, A., Dekanic, T., Sujka, W., & Draczynski, Z. (2020). The chitosan implementation into cotton and polyester/cotton blend fabrics. Materials, 13(7), 1616. https://doi.org/10.3390/ma13071616</p><p></p><p>Fonseca, V., Xavier, J., James, S. E., Oliveira, T. d., Bispo, A. M., Junior, L. C., & Giovanetti, M. (2019). Mosquito-Borne Viral Diseases: Control and Prevention in the Genomics Era. Vector-Borne Diseases - Recent Developments in Epidemiology and Control. https://doi.org/10.5772/intechopen.88769</p><p></p><p>Forgearini, J. C., Michalowski, C. B., Assumpcao, E., Pohlmann, A. R., & Guterres, S. S. (2016). Development of an insect repellent spray for textile based on permethrin-loaded lipid-core nanocapsules. Journal of Nanoscience and Nanotechnology, 16(2), 1301-1309. https://doi.org/10.1166/jnn.2016.11665</p><p></p><p>G. Gordh & D. Headrick. (2001). A Dictionary of Entomology, Wallingford, Washington, DC: CABI Publishing.</p><p></p><p>Gabbott, P. (2008). Principles and applications of thermal analysis. Blackwell Publishing Ltd.</p><p></p><p>Gaire, S., Scharf, M. E., & Gondhalekar, A. D. (2020). Synergistic Toxicity Interactions between Plant Essential Oil Components Against the Common Bed Bug (Cimex lectularius L.). Insects, 11(2), 133. https://doi.org/10.3390/insects11020133</p><p></p><p>Garg, S. S., & Gupta, J. (2023). Guar Gum-based nanoformulations: Implications for improving drug delivery. International Journal of Biological Macromolecules, 229, 476-485. https://doi.org/10.1016/j.ijbiomac.2022.12.271</p><p></p><p>Gavlighi, H. A. (2013). Tragacanth gum: Structural composition, natural functionality and enzymatic conversion as source of potential prebiotic activity (Publication No. 74237796) [Ph. D thesis, Technical University of Denmark]. https://backend.orbit.dtu.dk/ws/portalfiles/portal/74237793</p><p></p><p>Gayathri, B., Muthukumarasamy, N., Velauthapillai, D., Santhosh, S. B., & Asokan, V. (2018). Magnesium incorporated hydroxyapatite nanoparticles: Preparation, characterization, antibacterial and larvicidal activity. Arabian Journal of Chemistry, 11(5), 645-654. https://doi.org/10.1016/j.arabjc.2016.05.010</p><p></p><p>Ghamari, M., Khoobdel, M., & Iman, M. (2019). Increase the residual efficacy of Permethrin-impregnated cloths against mosquitoes by the use of controlled-release formulations. International Journal of Mosquito Research, 6, 51-57.</p><p></p><p>Ghayempour, S., Montazer, M., & Mahmoudi Rad, M. (2015). Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract. International Journal of Biological Macromolecules, 81, 514-520. https://doi.org/10.1016/j.ijbiomac.2015.08.041</p><p></p><p>Ghosh, V., Ranjha, R., & Gupta, A. K. (2023). Polymeric encapsulation of anti-larval essential oil nanoemulsion for controlled release of bioactive compounds. Inorganic Chemistry Communications, 150, 110507. https://doi.org/10.1016/j.inoche.2023.110507</p><p></p><p>Gliko-Kabir, I., Penhasi, A., & Rubinstein, A. (1999). Characterization of crosslinked guar by thermal analysis. Carbohydrate Research, 316(1-4), 6-13. https://doi.org/10.1016/s0008-6215(99)00025-7</p><p></p><p>Gnankine, O., & Bassole, I. (2017). Essential oils as an alternative to pyrethroids' resistance against anopheles species complex Giles (Diptera: Culicidae). Molecules, 22(10), 1321. https://doi.org/10.3390/molecules22101321</p><p></p><p>Golmakani, M.-T., Zare, M., & Razzaghi, S. (2017). Eugenol enrichment of clove bud essential oil using different microwave-assisted distillation methods. Food Science and Technology Research, 23(3), 385-394. https://doi.org/10.3136/fstr.23.385</p><p></p><p>Gopinath, K., Karthika, V., Sundaravadivelan, C., Gowri, S., & Arumugam, A. (2015). Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. Journal of Nanostructure in Chemistry, 5(3), 295-303. https://doi.org/10.1007/s40097-015-0161-2</p><p></p><p>Grishanov, S. (2011). Structure and properties of textile materials. Handbook of Textile and Industrial Dyeing, 28-63. https://doi.org/10.1533/9780857093974.1.28</p><p></p><p>Grzadka, E., Matusiak, J., Godek, E., & Maciolek, U. (2021). Mixtures of cationic guar gum and anionic surfactants as stabilizers of zirconia suspensions. Journal of Molecular Liquids, 343, 117677. https://doi.org/10.1016/j.molliq.2021.117677</p><p></p><p>Gupta, A., Singh, S. S., Mittal, A. M., Singh, P., Goyal, S., Kannan, K. R., Gupta, A. K., & Gupta, N. (2022). Mosquito olfactory response ensemble enables pattern discovery by curating a behavioral and electrophysiological response database. iScience, 25(3), 103938. https://doi.org/10.1016/j.isci.2022.103938</p><p></p><p>Hamdy, D. M., & Hassabo, A. G. (2021). Ph and temperature thermosensitive for modification of cotton fabric (a review). Biointerface Research in Applied Chemistry, 12(2), 2216-2228. https://doi.org/10.33263/briac122.22162228</p><p></p><p>Hanamertani, A. S., Pilus, R. M., Manan, N. A., & Mutalib, M. I. (2018). The use of ionic liquids as additive to stabilize surfactant foam for Mobility Control Application. Journal of Petroleum Science and Engineering, 167, 192-201. https://doi.org/10.1016/j.petrol.2018.04.010</p><p></p><p>Haro-Gonzalez, J. N., Castillo-Herrera, G. A., Martinez-Velazquez, M., & Espinosa-Andrews, H. (2021). Clove essential oil (Syzygium aromaticum L. Myrtaceae): Extraction, chemical composition, food applications, and essential bioactivity for human health. Molecules, 26(21), 6387. https://doi.org/10.3390/molecules26216387</p><p></p><p>Hassanzadeh, H., Alizadeh, M., Hassanzadeh, R., & Ghanbarzadeh, B. (2022). Garlic essential oil-based nanoemulsion carrier: Release and stability kinetics of volatile components. Food Science & Nutrition, 10(5), 1613-1625. https://doi.org/10.1002/fsn3.2784</p><p></p><p>Hazarika, H., Krishnatreyya, H., Tyagi, V., Islam, J., Gogoi, N., Goyary, D., Chattopadhyay, P., & Zaman, K. (2022). The Fabrication and assessment of mosquito repellent cream for outdoor protection. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-06185-9</p><p></p><p>Hebeish, A., Hamdy, I. A., El-Sawy, S. M., & Abdel-Mohdy, F. A. (2010). Preparation of durable insect repellent cotton fabric through treatment with a finishing formulation containing cypermethrin. Journal of the Textile Institute, 101(7), 627-634. https://doi.org/10.1080/00405000902732859</p><p></p><p>Hien, L. T., & Dao, D. T. (2019). Formation of nanoemulsion from black pepper essential oil by high-speed homogenization method. Vietnam Journal of Chemistry, 57(3), 352-356. https://doi.org/10.1002/vjch.201900033</p><p></p><p>Ho, K., Mo, S., Tang, B., Wong, T.Y., & Mo, M. (2019). Comparing Mosquito Repellency Efficacy on Textiles Sprayed with DEET and Permethrin. Chemical & Pharmaceutical Research, 1(1), 1-4. https://doi:10.33425/2689-1050.1006</p><p></p><p>Hodgson, E. S., Lettvin, J. Y., & Roeder, K. D. (1955). Physiology of a primary chemoreceptor unit. Science, 122(3166), 417-418. https://doi.org/10.1126/science.122.3166.417-a</p><p></p><p>Huang, Y., Lu, J., & Xiao, C. (2007). Thermal and mechanical properties of cationic guar gum/poly (acrylic acid) hydrogel membranes. Polymer Degradation and Stability, 92(6), 1072-1081. https://doi.org/10.1016/j.polymdegradstab.2007.02.011</p><p></p><p>Ibrahim, S., Riahi, O., Said, S. M., Sabri, M. F. M., & Rozali, S. (2019). Biopolymers from crop plants. Reference Module in Materials Science and Materials Engineering, 2, 1-10. https://doi.org/10.1016/b978-0-12-803581-8.11573-5</p><p></p><p>Iliou, K., Kikionis, S., Petrakis, P. V., Ioannou, E., & Roussis, V. (2019). Citronella oil-loaded electrospun micro/nanofibrous matrices as sustained repellency systems for the Asian tiger mosquito Aedes albopictus. Pest management science, 75(8), 2142-2147. https://doi.org/10.1002/ps.5334</p><p></p><p>International Monetary Fund. (2023, October 10). World Economic Outlook, October 2023: Navigating global divergences. https://www.imf.org/en/world-economic-outlook-october-2023</p><p></p><p>International Standard, ISO 150-C06 (2010) Test for colour fastness - part C06: colour fastness to domestic and commercial laundering. International Organization for Standardization for Standardization (ISO), Switzerland.</p><p></p><p>International Standard, ISO 22414 (2017) Particle size analysis: Dynamic Light Scattering. International Organization for Standardization for Standardization (ISO), Switzerland.</p><p></p><p>Irshad, M., Subhani, M. A., Ali, S., & Hussain, A. (2019). Biological Importance of Essential Oils. Essential Oils. IntechOpen. https://doi.org/10.5772/intechopen.87198</p><p></p><p>Ishwarya, R., Vaseeharan, B., Kalyani, S., Banumathi, B., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Al-anbr, M. N., Khaled, J. M., & Benelli, G. (2018). Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. Journal of Photochemistry and Photobiology B: Biology, 178, 249-258. https://doi.org/10.1016/j.jphotobiol.2017.11.006</p><p></p><p>Islam, J., Zaman, K., Duarah, S., Raju, P.S., Chattopadhyay, P. (2017). Mosquito repellents: An insight into the chronological perspectives and novel discoveries. Acta Tropica. 167, 216-230. https://doi.org/10.1016/j.actatropica.2016.12.031</p><p></p><p>Jafari, S. M., & McClements, L. D. (2018). Nanoemulsions: Formulation, applications, and characterization. Academic Press, an imprint of Elsevier.</p><p></p><p>Jafari, S. M., Paximada, P., Mandala, I., Assadpour, E., & Mehrnia, M. A. (2017). Nanoencapsulation Technologies for the Food and Nutraceutical Industries. Elsevier. https://doi.org/10.1016/b978-0-12-809436-5.00002-1</p><p></p><p>Jayari, A., Donsi, F., Ferrari, G., & Maaroufi, A. (2022). Nanoencapsulation of thyme essential oils: Formulation, characterization, storage stability, and biological activity. Foods, 11(13), 1858. https://doi.org/10.3390/foods11131858</p><p></p><p>Kalita, B.., Bora, S.., & Sharma, A. K. . (2013). Plant Essential Oils as Mosquito Repellent-A Review. International Journal of Research and Development in Pharmacy & Life Sciences, 3(1), 715-721.</p><p></p><p>Karmakar, K. (2016). Application of natural gum as a binder in modern drug delivery. Journal of Analytical & Pharmaceutical Research, 3(4), 12-17. https://doi.org/10.15406/japlr.2016.03.00061</p><p></p><p>Katz, T. M., Miller, J. H., & Hebert, A. A. (2008). Insect repellents: Historical perspectives and new developments. Journal of the American Academy of Dermatology, 58(5), 865-871. https://doi.org/10.1016/j.jaad.2007.10.005</p><p></p><p>Kelidari, H. R., Moemenbellah-Fard, M. D., Morteza-Semnani, K., Amoozegar, F., Shahriari-Namadi, M., Saeedi, M., & Osanloo, M. (2021). Solid-lipid nanoparticles (SLN)s containing Zataria multiflora essential oil with no-cytotoxicity and potent repellent activity against Anopheles stephensi. Journal of parasitic diseases: official organ of the Indian Society for Parasitology, 45(1), 101-108. https://doi.org/10.1007/s12639-020-01281-x</p><p></p><p>Khanna, S., & Chakraborty, J. N. (2018). Mosquito repellent activity of cotton functionalized with inclusion complexes of ss-cyclodextrin citrate and essential oils. Fashion and Textiles, 5(1). 1-18. https://doi.org/10.1186/s40691-017-0125-x</p><p></p><p>Khounvilay, K., Estevinho, B. N., & Sittikijyothin, W. (2019). Citronella oil microencapsulated in carboxymethylated tamarind gum and its controlled release. Engineering Journal, 23(5), 217-227. https://doi.org/10.4186/ej.2019.23.5.217</p><p></p><p>Koh, J. (2011). Dyeing of cellulosic fibres. In M. Clark (Eds.), Handbook of textile and industrial dyeing, (pp. 129-146). Elsevier. https://doi.org/10.1533/9780857094919.1.129</p><p></p><p>Komaiko, J. S., & McClements, D. J. (2016). Formation of Food-Grade Nanoemulsions Using Low-Energy Preparation Methods: A Review of Available Methods. Comprehensive reviews in food science and food safety, 15(2), 331-352. https://doi.org/10.1111/1541-4337.12189</p><p></p><p>Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., Peppas, N. A. (1985). Mechanisms of solute release from porous hydrophilic polymers. International Journal of Pharmaceutics, 15, 25-35. https://doi.org/10.1016/0378-5173(83)90064-9</p><p></p><p>Kraemer, M., Reiner, R. C., Jr, Brady, O. J., Messina, J. P., Gilbert, M., Pigott, D. M., Yi, D., Johnson, K., Earl, L., Marczak, L. B., Shirude, S., Davis Weaver, N., Bisanzio, D., Perkins, T. A., Lai, S., Lu, X., Jones, P., Coelho, G. E., Carvalho, R. G., Van Bortel, W., & Golding, N. (2019). Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature microbiology, 4(5), 854-863. https://doi.org/10.1038/s41564-019-0376-y</p><p></p><p>Krajick K. (2006). Medical entomology: Keeping the bugs at bay. Science, 313(5783), 36-38. https://doi.org/10.1126/science.313.5783.36</p><p></p><p>Kumar, M., Bishnoi, R. S., Shukla, A. K., & Jain, C. P. (2019). Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Preventive nutrition and food science, 24(3), 225-234. https://doi.org/10.3746/pnf.2019.24.3.225</p><p></p><p>Kweka, E. J., Baraka, V., Mathias, L., Mwang'onde, B., Baraka, G., Lyaruu, L., & Mahande, A. M. (2018). Ecology of Aedes Mosquitoes, the Major Vectors of Arboviruses in Human Population. In J. A. Falcon-Lezama, M. Betancourt-Cravioto, & R. Tapia-Conyer (Eds.), Dengue Fever - a Resilient Threat in the Face of Innovation. IntechOpen. https://doi.org/10.5772/intechopen.81439</p><p></p><p>Lalthazuali, & Mathew, N. (2017). Mosquito repellent activity of volatile oils from selected aromatic plants. Parasitology research, 116(2), 821-825. https://doi.org/10.1007/s00436-016-5351-4</p><p></p><p>Le, T.-A., Guo, Y., Zhou, J.-N., Yan, J., Zhang, H., & Huynh, T.-P. (2022). Synthesis, characterization and biocompatibility of Guar Gum-benzoic acid. International Journal of Biological Macromolecules, 194, 110-116. https://doi.org/10.1016/j.ijbiomac.2021.11.180</p><p></p><p>Lee M. Y. (2018). Essential Oils as Repellents against Arthropods. BioMed research international, 6860271. https://doi.org/10.1155/2018/6860271</p><p></p><p>Legeay, S., Clere, N., Apaire-Marchais, V., Faure, S., & Lapied, B. (2018). Unusual modes of action of the repellent DEET in insects highlight some human side effects. European journal of pharmacology, 825, 92-98. https://doi.org/10.1016/j.ejphar.2018.02.033.</p><p></p><p>Lucia, A., Toloza, A. C., Fanucce, M., Fernandez-Pena, L., Ortega, F., Rubio, R. G., & Guzman, E. (2020). Nanoemulsions based on thymol-eugenol mixtures: Characterization, stability and larvicidal activity against Aedes aegypti. Bulletin of Insectology, 73, 153-160.</p><p></p><p>Ma, H. L., Varanda, L. C., Perussi, J. R., & Carrilho, E. (2021). Hypericin-loaded oil-in-water nanoemulsion synthesized by ultrasonication process enhances photodynamic therapy efficiency. Journal of Photochemistry and Photobiology B: Biology, 223, 112303. https://doi.org/10.1016/j.jphotobiol.2021.112303</p><p></p><p>Machado, A. A., Estevan, A. O., Sales, A., Brabes, K. C., Croda, J., & Negrao, F. J. (2014). Direct costs of dengue hospitalization in Brazil: public and private health care systems and use of WHO guidelines. PLoS neglected tropical diseases, 8(9), e3104. https://doi.org/10.1371/journal.pntd.0003104</p><p></p><p>Madhumita, M., Guha, P., & Nag, A. (2019). Extraction of betel leaves (Piper Betle L.) essential oil and its bio-actives identification: Process Optimization, GC-MS analysis and anti-microbial activity. Industrial Crops and Products, 138, 111578. https://doi.org/10.1016/j.indcrop.2019.111578</p><p></p><p>Mahato, N., Sharma, K., Koteswararao, R., Sinha, M., Baral, E., & Cho, M. H. (2019). Citrus essential oils: Extraction, authentication and application in food preservation. Critical reviews in food science and nutrition, 59(4), 611-625. https://doi.org/10.1080/10408398.2017.1384716</p><p></p><p>Ministry of Health Malaysia. (2020, April). Clinical Practice Guidelines, 2020. https://www.moh.gov.my/</p><p></p><p>Mansa, R., & Detellier, C. (2013). Preparation and characterization of Guar-Montmorillonite nanocomposites. Materials, 6(11), 5199-5216. https://doi.org/10.3390/ma6115199</p><p></p><p>Mapossa, A. B., Focke, W. W., Tewo, R. K., Androsch, R., & Kruger, T. (2021). Mosquito-repellent controlled-release formulations for fighting infectious diseases. Malaria Journal, 20(1). https://doi.org/10.1186/s12936-021-03681-7</p><p></p><p>Martins, W. da, de Araujo, J. S., Feitosa, B. F., Oliveira, J. R., Kotzebue, L. R., Agostini, D. L., de Oliveira, D. L., Mazzetto, S. E., Cavalcanti, M. T., & da Silva, A. L. (2021). Lemongrass (Cymbopogon Citratus DC. Stapf) essential oil microparticles: Development, characterization, and antioxidant potential. Food Chemistry, 355, 129644. https://doi.org/10.1016/j.foodchem.2021.129644</p><p></p><p>Maurya, A., Singh, V. K., Das, S., Prasad, J., Kedia, A., Upadhyay, N., Dubey, N. K., Dwivedy, A. K. (2021). Essential Oil Nanoemulsion as Eco-Friendly and Safe Preservative: Bioefficacy Against Microbial Food Deterioration and Toxin Secretion, Mode of Action, and Future Opportunities. Front Microbiology. 12. https://doi: 10.3389/fmicb.2021.751062</p><p></p><p>McClements, D. J., & Rao, J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical reviews in food science and nutrition, 51(4), 285-330. https://doi.org/10.1080/10408398.2011.559558</p><p></p><p>Mishra, V., Bansal, K., Verma, A., Yadav, N., Thakur, S., Sudhakar, K., & Rosenholm, J. (2018b). Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics, 10(4), 191-201. https://doi.org/10.3390/pharmaceutics10040191</p><p></p><p>Misni, N., Nor, Z. M., & Ahmad, R. (2017). Repellent effect of microencapsulated essential oil in lotion formulation against mosquito bites. Journal of vector borne diseases, 54(1), 44-53.</p><p></p><p>Mohammadi, A., Hosseini, S. M., & Hashemi, M. (2020). Emerging Chitosan nanoparticles loading-system boosted the antibacterial activity of Cinnamomum zeylanicum essential oil. Industrial Crops and Products, 155, 112824. https://doi.org/10.1016/j.indcrop.2020.112824</p><p></p><p>Mondal, A., Debnath, P., & Mondal, N. K. (2021). Nanoparticles: A new tool for control of mosquito larvae. Intelligent Environmental Data Monitoring for Pollution Management, 49-70. https://doi.org/10.1016/b978-0-12-819671-7.00003-8</p><p></p><p>Moreno Raja, M., Lim, P. Q., Wong, Y. S., Xiong, G. M., Zhang, Y., Venkatraman, S., & Huang, Y. (2019). Polymeric nanomaterials. Nanocarriers for Drug Delivery, 557-653. https://doi.org/10.1016/b978-0-12-814033-8.00018-7</p><p></p><p>Mores, G. B., Schuler-Faccini, L., Hasenack, H., Fetzer, L. O., Get_, G., Dornelles Souza, G., & Ferraz, G. (2020). Site Occupancy by Aedes aegypti in a Subtropical City is Most Sensitive to Control during Autumn and Winter Months. American Journal of Tropical Medicine and Hygiene, 103(1), 445-454. https://doi: 10.4269/ajtmh.19-0366</p><p></p><p>Murugan, K., Anitha, J., Suresh, U., Rajaganesh, R., Panneerselvam, C., Aziz, A. T., Tseng, L.-C., Kalimuthu, K., Alsalhi, M. S., Devanesan, S., Nicoletti, M., Sarkar, S. K., Benelli, G., & Hwang, J.-S. (2017). Chitosan-fabricated ag nanoparticles and larvivorous fishes: A novel route to control the Coastal Malaria Vector Anopheles sundaicus? Hydrobiologia, 797(1), 335-350. https://doi.org/10.1007/s10750-017-3196-1</p><p></p><p>Murugan, K., Dinesh, D., Nataraj, D., Subramaniam, J., Amuthavalli, P., Madhavan, J., Rajasekar, A., Rajan, M., Thiruppathi, K. P., Kumar, S., Higuchi, A., Nicoletti, M., & Benelli, G. (2017). Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environmental Science and Pollution Research, 25(11), 10504-10514. https://doi.org/10.1007/s11356-017-0313-7</p><p></p><p>Murugan, K., Jaganathan, A., Rajaganesh, R., Suresh, U., Madhavan, J., Senthil-Nathan, S., Rajasekar, A., Higuchi, A., Kumar, S. S., Alarfaj, A. A., Nicoletti, M., Petrelli, R., Cappellacci, L., Maggi, F., & Benelli, G. (2017). Poly(styrene sulfonate)/poly(allylamine hydrochloride) encapsulation of tio2 nanoparticles boosts their toxic and repellent activity against Zika virus mosquito vectors. Journal of Cluster Science, 29(1), 27-39. https://doi.org/10.1007/s10876-017-1300-3</p><p></p><p>Murugan, K., Nataraj, D., Jaganathan, A., Dinesh, D., Jayashanthini, S., Samidoss, C. M., Paulpandi, M., Panneerselvam, C., Subramaniam, J., Aziz, A. T., Nicoletti, M., Kumar, S., Higuchi, A., & Benelli, G. (2016). Nanofabrication of graphene quantum dots with high toxicity against malaria mosquitoes, Plasmodium falciparum and MCF-7 cancer cells: Impact on predation of non-target tadpoles, odonate nymphs and Mosquito fishes. Journal of Cluster Science, 28(1), 393-411. https://doi.org/10.1007/s10876-016-1107-7</p><p></p><p>Murugan, K., Nataraj, D., Madhiyazhagan, P., Sujitha, V., Chandramohan, B., Panneerselvam, C., Dinesh, D., Chandirasekar, R., Kovendan, K., Suresh, U., Subramaniam, J., Paulpandi, M., Vadivalagan, C., Rajaganesh, R., Wei, H., Syuhei, B., Aziz, A. T., Alsalhi, M. S., Devanesan, S., Nicoletti, M., _ Benelli, G. (2017). Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms. Parasitology research, 115(3), 1071-1083. https://doi.org/10.1007/s00436-015-4837-9</p><p></p><p>Murugan, K., Samidoss, C. M., Theerthagiri, J., Panneerselvam, C., Madhavan, J., Rajasekar, A., Canale, A., & Benelli, G. (2017). Solution combustion synthesis of hierarchically structured V2O5 nanoflakes: Efficacy against Plasmodium falciparum, plasmodium berghei and the malaria vector anopheles stephensi. Journal of Cluster Science, 28(4), 2337-2348. https://doi.org/10.1007/s10876-017-1228-7</p><p></p><p>Muthamil Selvan, S., Vijai Anand, K., Govindaraju, K., Tamilselvan, S., Kumar, V. G., Subramanian, K. S., Kannan, M., & Raja, K. (2018). Green synthesis of copper oxide nanoparticles and mosquito larvicidal activity against dengue, zika and chikungunya causing vector Aedes aegypti. IET nanobiotechnology, 12(8), 1042-1046. https://doi.org/10.1049/iet-nbt.2018.5083</p><p></p><p>Muttiah, N. N., Lim, V., & Saidin, N. A. (2019). Chemical Composition and Synergistic Repellent Activity of Jasminum officinale and Anthemis nobilis Essential Oils against Aedes aegypti mosquitoes. Malaysian Journal of Medicine and Health Sciences, 15(9), 30-36.</p><p></p><p>Nagaraju, P. G., Sengupta, P., Poornima Priyadarshini, C. G., & Rao, P. J. (2020). Nanoencapsulation of Clove Oil and Study of Physico-Chemical Properties, Cytotoxic, Haemolytic and Antioxidant Activities. Journal of Food Process Engineering. 44 (4). e1365. https://doi.org/10.1111/jfpe.13645</p><p></p><p>Nogueira Barradas, T., Perdiz Senna, J., Ricci Junior, E., Regina Elias M. C., 2016. Polymer-based Drug Delivery Systems Applied to Insects Repellents Devices: A Review. Current drug delivery. 13, 221-235. https://doi.org/10.2174/1567201813666151207110515</p><p></p><p>Nosrat, C., Altamirano, J., Anyamba, A., Caldwell, J. M., Damoah, R., Mutuku, F., Ndenga, B., & LaBeaud, A. D. (2021). Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. PLoS neglected tropical diseases, 15(3), e0009182. https://doi.org/10.1371/journal.pntd.0009182</p><p></p><p>Osman, S. E., Swidan, M. H., Kheirallah, D. A., & Nour, F. E. (2016). Histological effects of essential oils, their monoterpenoids and insect growth regulators on midgut, integument of larvae and ovaries of Khapra Beetle, Trogoderma Granarium Everts. Journal of Biological Sciences, 16(3), 93-101. https://doi.org/10.3923/jbs.2016.93.101</p><p></p><p>Pablo Rodriguez-Sanchez, I., Rafael Saldana-Torres, D., Karina Villanueva-Segura, O., Lourdes Garza-Rodriguez, M., Gomez-Govea, M. A., Liang, G., de Lourdes Ramirez-Ahuja, M., De La Luz Martinez-Fierro, M., Delgado-Enciso, I., Martinez-de-Villarreal, L. E., Zhou, Y., Flores-Suarez, A. E., Chen, X., Resendez Perez, D., Zhang, C.-Y., & Ponce-Garcia, G. (2021). miRNAs of Aedes aegypti (Linnaeus 1762) conserved in six orders of the class Insecta. Scientific Reports, 11, 10706-10716. https://doi 10.1038/s41598-021-90095-9</p><p></p><p>Paixao, E. S., Teixeira, M. G., & Rodrigues, L. C. (2017). Zika, chikungunya and dengue: The causes and threats of new and reemerging arboviral diseases. BMJ Global Health, 3, 1-7. https://doi. 10.1136/bmjgh-2017-000530</p><p></p><p>Palacios-Mateo, C., van der Meer, Y. & Seide, G. (2021). Analysis of the polyester clothing value chain to identify key intervention points for sustainability. Environmental Science Europe. 33(1), 2-27. https://doi.org/10.1186/s12302-020-00447-x</p><p></p><p>Parvez, A. A., Hossain, Md. J., Hossain, Md. Z., Sohan, M. S., Hoque, F., Ahsan, Md. H., & Hoque, Md. S. (2023). Mosquito repellent fabric: Development and characterization of peppermint and garlic mixture finish on knitted fabric to examine mosquito repellency. Heliyon, 9(5), e15944. https://doi.org/10.1016/j.heliyon.2023.e15944</p><p></p><p>Patel, R. V., Shaeer, K. M., Patel, P., Garmaza, A., Wiangkham, K., Franks, R. B., Pane, O., & Carris, N. W. (2016). EPA-registered repellents for mosquitoes transmitting emerging viral disease. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 36(12), 1272-1280. https://doi.org/10.1002/phar.1854</p><p></p><p>Pathak, C., Vaidya, F.U., Pandey, S.M. (2019). Mechanism for Development of Nanobased Drug Delivery System, Elsevier. https://doi:10.1016/b978-0-12-814029-1.00003-x</p><p></p><p>Pavoni, L., Perinelli, D. R., Bonacucina, G., Cespi, M., & Palmieri, G. F. (2020). An overview of micro- and nanoemulsions as vehicles for essential oils: formulation, preparation, and stability. Nanomaterials, 10(1), 135. https://doi.org/10.3390/nano10010135</p><p></p><p>Pavoni, L., Perinelli, D. R., Ciacciarelli, A., Quassinti, L., Bramucci, M., Miano, A., Casettari, L., Cespi, M., Bonacucina, G., & Palmieri, G. F. (2020). Properties and stability of nanoemulsions: How relevant is the type of surfactant? Journal of Drug Delivery Science and Technology, 58, 101772. https://doi.org/10.1016/j.jddst.2020.101772</p><p></p><p>Pinto, I.C., Cerqueira-Coutinho, C.S., Santos, E.P., Carmo, F.A., Ricci-Junior, E. (2017). Development and characterization of repellent formulations based on nanostructured hydrogels. Drug Development and Industrial Pharmacy. 43, 67-73. http://dx.doi.org/10.1080/03639045. 2016.1220564.</p><p></p><p>Preeti, Sambhakar S, Malik R, Bhatia S, Al-Harrasi A, Rani C, Saharan R, Kumar S, Geeta, Sehrawat R. Nanoemulsion: An Emerging Novel Technology for Improving the Bioavailability of Drugs. Scientifica (Cairo). https://doi. 10.1155/2023/6640103</p><p></p><p>Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., Rahuman, A. A., Santhoshkumar, T., Kirthi, A. V., Jayaseelan, C., & Marimuthu, S. (2011). Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitology research, 109(5), 1403-1415. https://doi.org/10.1007/s00436-011-2387-3</p><p></p><p>Rehman, A., Qunyi, T., Sharif, H. R., Korma, S. A., Karim, A., Manzoor, M. F., Mehmood, A., Iqbal, M. W., Raza, H., Ali, A., & Mehmood, T. (2021). Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products. Carbohydrate Polymer Technologies and Applications, 2, 100082. https://doi.org/10.1016/j.carpta.2021.100082</p><p></p><p>Reinert, J. F. (2000). New classification for the composite genus Aedes (Diptera: Culicidae: Aedini), elevation of subgenus Ochlerotatus to generic rank, reclassification of the other subgenera, and notes on certain subgenera and species. Journal of the American Mosquito Control Association, 16(3), 175-188.</p><p></p><p>Reinhold, J. M., Lazzari, C. R., & Lahondere, C. (2018). Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: A review. Insects, 9(4), 1-17. https://doi. 10.3390/insects9040158</p><p></p><p>Ren, Y., Zhang, Q., Yang, N., Xu, J., Liu, J., Yang, R., Kunkelmann, C., Schreiner, E., Holtze, C., Mulheims, K., & Sachweh, B. (2019). Molecular dynamics simulations of surfactant adsorption at oil/water interface under shear flow. Particuology, 44, 36-43. https://doi.org/10.1016/j.partic.2018.09.002</p><p></p><p>Rios, J.L. (2016). Essential oils. In Victor, R. P. (Eds.), Essential Oils in Food Preservation, Flavor and Safety, (pp. 3-10). Elsevier. https://doi.org/10.1016/b978-0-12-416641-7.00001-8</p><p></p><p>Romes, N. B., Abdul Wahab, R., Abdul Hamid, M., Oyewusi, H. A., Huda, N., & Kobun, R. (2021). Thermodynamic stability, in-vitro permeability, and in-silico molecular modeling of the optimal Elaeis guineensis leaves extract water-in-oil nanoemulsion. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-00409-0</p><p></p><p>Rubilar, O., Rai, M., Tortella, G., Diez, M. C., Seabra, A. B., & Duran, N. (2013). Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnology letters, 35(9), 1365-1375. https://doi.org/10.1007/s10529-013-1239-x</p><p></p><p>S'ari, M., Koniuch, N., Brydson, R., Hondow, N., & Brown, A. (2020). High-resolution imaging of Organic Pharmaceutical Crystals by transmission electron microscopy and scanning moire fringes. Journal of Microscopy, 279(3), 197-206. https://doi.org/10.1111/jmi.12866</p><p></p><p>Sadat Hosseini, M., Hemmati, K., & Ghaemy, M. (2016). Synthesis of nanohydrogels based on tragacanth gum biopolymer and investigation of swelling and drug delivery. International Journal of Biological Macromolecules, 82, 806-815. https://doi.org/10.1016/j.ijbiomac.2015.09.067</p><p></p><p>Sanford, J. L., Shields, V. D. C., and Dickens, J. C. (2013). Gustatory receptor neuron responds to DEET and other insect repellents in the yellow-fever mosquito, Aedes aegypti. Naturwissenschaften, 100, 269-273. https:// doi. 10.1007/s00114-013-1021-x</p><p></p><p>Sanga, A. G., Mazigo, H. D., Manjurano, A., Morona, D., Thomas, A., & Kweka, E. J. (2023). Measuring repellence and mortality effects of clove and cinnamon essential oils impregnated nets against anopheles gambiae senso stricto using tunnel test. Journal of Natural Pesticide Research, 5, 100046. https://doi.org/10.1016/j.napere.2023.100046</p><p></p><p>Saruchi, Kumar, V., Mittal, H., & Alhassan, S. M. (2019). Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals. International journal of biological macromolecules, 132, 1252-1261. https://doi.org/10.1016/j.ijbiomac.2019.04.023</p><p></p><p>Satti, S. M., & Shah, A. A. (2020). Polyester-based biodegradable plastics: An approach towards sustainable development. Letters in Applied Microbiology, 70(6), 413-430. https://doi.org/10.1111/lam.13287</p><p></p><p>Schmidt, H. R., & Benton, R. (2020). Molecular mechanisms of olfactory detection in insects: Beyond receptors. Open Biology, 10(10). https://doi.org/10.1098/rsob.200252</p><p></p><p>Schroen, K., de Ruiter, J., & Berton-Carabin, C. (2020). The importance of interfacial tension in emulsification: Connecting scaling relations used in large scale preparation with microfluidic measurement methods. ChemEngineering, 4(4), 63. https://doi.org/10.3390/chemengineering4040063</p><p></p><p>Sedger, L., Collins, M. H., Hughes, G. L., Robin, C., Maciel-De-Freitas, R., Dias Da Silveira, I., Petersen, M. T., Sylvestre, G., Garcia, G. A., David, M. R., & Pavan, M. G. (2018). Zika Virus Infection Produces a Reduction on Aedes aegypti Lifespan but No Effects on Mosquito Fecundity and Oviposition Success. Frontiers in Microbiology, 9(3011), 1-8. https://doi. 10.3389/fmicb.2018.03011</p><p></p><p>Sharma, A. D., Chhabra, R., Jain, P., Kaur, I., Amrita, & Bhawna. (2023). Nanoemulsions (o/w) prepared from essential oil extracted from melaleuca alternifolia: Synthesis, characterization, stability and evaluation of anticancerous, antioxidant, anti-inflammatory and antidiabetic activities. Journal of Biomaterials Science, 1-24. https://doi.org/10.1080/09205063.2023.2253584</p><p></p><p>Sheikh, Z., Amani, A., Basseri, H. R., MoosaKazemi, S. H., Sedaghat, M. M., Azam, K., Yousefpoor, Y., Amirmohammadi, F., & Azizi, M. (2021). Development of mosquito protective textiles using nanoemulsion of Eucalyptus globulus and Syzygium aromaticum essential oils against malaria vector, Anopheles stephensi (Liston). Research Square. https://doi.org/10.21203/rs.3.rs-446207/v1</p><p></p><p>Simaremare, S. R., Hung, C.-C., Hsieh, C.-J., & Yiin, L.-M. (2019). Relationship between organophosphate and pyrethroid insecticides in blood and their metabolites in urine: A pilot study. International Journal of Environmental Research and Public Health, 17(1), 34. https://doi.org/10.3390/ijerph17010034</p><p></p><p>Singh, I. R., & Pulikkal, A. K. (2022). Preparation, stability and biological activity of essential oil-based Nano Emulsions: A comprehensive review. Open Nano, 8, 100066. https://doi.org/10.1016/j.onano.2022.100066</p><p></p><p>Singh, N., & Sheikh, J. (2021). Sustainable development of mosquito-repellent, flame-retardant, antibacterial, fragrant and antioxidant linen using microcapsules containing thymus vulgaris oil in in-situ generated chitosan-phosphate. Cellulose, 28(4), 2599-2614. https://doi.org/10.1007/s10570-020-03629-1</p><p></p><p>Singpanna, K., Charnvanich, D., & Panapisal, V. (2022). Effect of the hydrophilic-lipophilic balance values of non-ionic surfactants on size and size distribution and stability of oil/water soybean oil nanoemulsions. Thai Journal of Pharmaceutical Sciences, 45(6), 487-491. http://doi. 10.56808/3027-7922.2530</p><p></p><p>Skoog, D. A., Holler, F, J., & Crouch, S. R. (2017). Principles of instrumental analysis (7th ed.). Cengage learning.</p><p></p><p>Sohan, M. S., Elshamy, S., Lara-Valderrama, G., Changwatchai, T., Khadizatul, K., Kobayashi, I., Nakajima, M., & Neves, M. A. (2023). Encapsulation of D-limonene into O/W nanoemulsions for enhanced stability. Polymers, 15(2), 471. https://doi.org/10.3390/polym15020471</p><p></p><p>Soltanzadeh, M., Peighambardoust, S. H., Ghanbarzadeh, B., Mohammadi, M., & Lorenzo, J. M. (2021a). Chitosan nanoparticles encapsulating lemongrass (Cymbopogon commutatus) essential oil: Physicochemical, structural, antimicrobial and in-vitro release properties. International Journal of Biological Macromolecules, 192, 1084-1097. https://doi.org/10.1016/j.ijbiomac.2021.10.070</p><p></p><p>Soni, N., & Prakash, S. (2014). Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasitology research, 113(11), 4015-4022. https://doi.org/10.1007/s00436-014-4069-4</p><p></p><p>Souza, R. S., Virginio, F., Riback, T. I. S., Suesdek, L., Barufi, J. B., & Genta, F. A. (2019). Microorganism-Based Larval Diets Affect Mosquito Development, Size and Nutritional Reserves in the Yellow Fever Mosquito Aedes aegypti (Diptera: Culicidae). Frontiers in Physiology, 152. https://doi. 10.3389/fphys.2019.00152</p><p></p><p>Sultana, N., Raul, P. K., Goswami, D., Das, D., Islam, S., Tyagi, V., Das, B., Gogoi, H. K., Chattopadhyay, P., & Raju, P. S. (2020). Bio-nanoparticle Assembly: A potent on-site biolarvicidal agent against Mosquito Vectors. RSC Advances, 10(16), 9356-9368. https://doi.org/10.1039/c9ra09972g</p><p></p><p>Suman, T. Y., Ravindranath, R. R., Elumalai, D., Kaleena, P. K., Ramkumar, R., Perumal, P., Aranganathan, L., & Chitrarasu, P. S. (2015). Larvicidal activity of titanium dioxide nanoparticles synthesized using Morinda citrifolia root extract against anopheles stephensi, Aedes aegypti and Culex quinquefasciatus and its other effect on non-target fish. Asian Pacific Journal of Tropical Disease, 5(3), 224-230. https://doi.org/10.1016/s2222-1808(14)60658-7</p><p></p><p>Tadros, T. F. (2013). Emulsion formation and stability. John Wiley & Sons, Incorporated. https://doi.10.1002/9783527647941</p><p></p><p>Taghavizadeh Yazdi, M., Nazarnezhad, S., Mousavi, S., Sadegh Amiri, M., Darroudi, M., Baino, F., & Kargozar, S. (2021). Gum Tragacanth (GT): A versatile biocompatible material beyond borders. Molecules, 26(6), 1510. https://doi.org/10.3390/molecules26061510</p><p></p><p>Taheri, A., & Jafari, S. M. (2019). Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Advances in Colloid and Interface Science, 269, 277-295. https://doi.org/10.1016/j.cis.2019.04.009</p><p></p><p>Takechi-Haraya, Y., Ohgita, T., Demizu, Y., Saito, H., Izutsu, K., & Sakai-Kato, K. (2022). Current status and challenges of analytical methods for evaluation of size and surface modification of nanoparticle-based drug formulations. AAPS PharmSciTech, 23(5). https://doi.org/10.1208/s12249-022-02303-y</p><p></p><p>Tansaoui, H., Bouazizi, N., Behary, N., Campagne, C., El-Achari, A., & Vieillard, J. (2023). Assessing alternative pre-treatment methods to promote essential oil fixation into cotton and polyethylene terephthalate fiber: A comparative study. Polymers, 15(6), 1362. https://doi.org/10.3390/polym15061362</p><p></p><p>Tavares, M., da Silva, M. R., de Oliveira de Siqueira, L. B., Rodrigues, R. A., Bodjolle-d'Almeida, L., dos Santos, E. P., & Ricci-Junior, E. (2018). Trends in insect repellent formulations: A Review. International Journal of Pharmaceutics, 539(1-2), 190-209. https://doi.org/10.1016/j.ijpharm.2018.01.046</p><p></p><p>Teng, F., He, M., Xu, J., Chen, F., Wu, C., Wang, Z., & Li, Y. (2020). Effect of ultrasonication on the stability and storage of a soy protein isolate-phosphatidylcholine nanoemulsions. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-70462-8</p><p></p><p>Statista. (2022, January). The Statistics Portal. Retrieved January 29, 2022, from https://www.statista.com.</p><p></p><p>Thomas, A., Mazigo, H. D., Manjurano, A., Morona, D., & Kweka, E. J. (2017). Evaluation of active ingredients and larvicidal activity of clove and cinnamon essential oils against Anopheles gambiae (sensu lato). Parasites & Vectors, 10(1). https://doi.org/10.1186/s13071-017-2355-6</p><p></p><p>Turkoglu, G. C., Sariisik, A. M., Erkan, G., Yikilmaz, M. S., & Kontart, O. (2020). Micro- and nano-encapsulation of limonene and permethrin for mosquito repellent finishing of cotton textiles. Iranian Polymer Journal, 29(4), 321-329. https://doi.org/10.1007/s13726-020-00799-4</p><p></p><p>Umar, R. A., Zahary, M. N., Rohin, M. A. K., & Ismail, S. (2018). Chemical composition and the potential biological activities of Piper betel-a Review. Malaysian Journal of Applied Sciences, 3(1), 1-8. Retrieved from https://journal.unisza.edu.my/myjas/index.php/myjas/article/view/69</p><p></p><p>Versaci, D., Apostu, O. D., Dessantis, D., Amici, J., Francia, C., Minella, M., & Bodoardo, S. (2023). Tragacanth, an exudate gum as suitable aqueous binder for high voltage cathode material. Batteries, 9(4), 199. https://doi.org/10.3390/batteries9040199</p><p></p><p>Vijayakumar, S., Vinoj, G., Malaikozhundan, B., Shanthi, S., & Vaseeharan, B. (2015). Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochimica acta, 137, 886-891. https://doi.org/10.1016/j.saa.2014.08.064</p><p></p><p>Wathoni, N., Sriwidodo S, S., Sofian, F. F., Narsa, A. C., & Mutiara, A. N. (2018). Repellent activity of essential oils from Cananga odorata and Cymbopogon Nardus L. on corn starch based thixogel. Journal of Young Pharmacists, 10(2). https://doi.org/10.5530/jyp.2018.2s.24</p><p></p><p>Wheelwright, M., Whittle, C. R., & Riabinina, O. (2021). Olfactory systems across mosquito species. Cell and Tissue Research, 383(1), 75-90. https://doi.org/10.1007/s00441-020-03407-2</p><p></p><p>Wong, S. T., Kamari, A., Jaafar, A. M., Hussein, M. Z., Othman, H., Abdullah, H., Yusof, N., & Hashim, N. (2020). Longer mosquito control using a sodium alginate-Chitosan nanocarrier for cinnamaldehyde in larvicide formulations. Environmental Chemistry Letters, 18(4), 1345-1351. https://doi.org/10.1007/s10311-020-00993-z</p><p></p><p>World Health Organization. (2023, Mac.). Mosquito Borne Diseases. https://www.who.int/</p><p></p><p>Wu, H.-R., Wang, C.-Q., Wang, J.-X., Chen, J.-F., & Le, Y. (2020). Engineering of long-term stable transparent nanoemulsion using high-gravity rotating packed bed for oral drug delivery. International Journal of Nanomedicine, 15, 2391-2402. https://doi.org/10.2147/ijn.s238788</p><p></p><p>Wu, W. H., Eskin, D. G., Priyadarshi, A., Subroto, T., Tzanakis, I., & Zhai, W. (2021). New insights into the mechanisms of ultrasonic emulsification in the oil-water system and the role of Gas Bubbles. Ultrasonics Sonochemistry, 73, 105501. https://doi.org/10.1016/j.ultsonch.2021.105501</p><p></p><p>Xin, J. H., & Wang, X. W. (2018). Insect-repellent textiles. In Menghe, M & John, H. X. (Eds.), Engineering of High-Performance Textiles, (pp. 335-348). https://doi.org/10.1016/b978-0-08-101273-4.00027-5</p><p></p><p>Yamany, A. S., & Abdel-Gaber, R. (2022). Studies on the sensory sensilla on the tarsi and external genitalia of the Asian tiger mosquito, Aedes albopictus (skuse).</p><p>Microscopy Research and Technique, 86(2), 242-251. https://doi.org/10.1002/jemt.24264</p><p></p><p>Yekeen, N., Padmanabhan, E., Syed, A. H., Sevoo, T., & Kanesen, K. (2020). Synergistic influence of nanoparticles and surfactants on interfacial tension reduction, wettability alteration and stabilization of oil-in-water emulsion. Journal of Petroleum Science and Engineering, 186, 106779. https://doi.org/10.1016/j.petrol.2019.106779</p><p></p><p>Yue, P. F., Lu, X. Y., Zhang, Z. Z., Yuan, H. L., Zhu, W. F., Zheng, Q., & Yang, M. (2009). The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion. AAPS PharmSciTech, 10(2), 376-383. https://doi.org/10.1208/s12249-009-9216</p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p><p></p>
spellingShingle QD Chemistry
Nurul Nabila Aini Abdullah
Preparation, characterisation and effectiveness of essential oil-encapsulated biopolymer based nanoemulsions as mosquito spray formulations for fabric finishes
thesis_level Master
title Preparation, characterisation and effectiveness of essential oil-encapsulated biopolymer based nanoemulsions as mosquito spray formulations for fabric finishes
title_full Preparation, characterisation and effectiveness of essential oil-encapsulated biopolymer based nanoemulsions as mosquito spray formulations for fabric finishes
title_fullStr Preparation, characterisation and effectiveness of essential oil-encapsulated biopolymer based nanoemulsions as mosquito spray formulations for fabric finishes
title_full_unstemmed Preparation, characterisation and effectiveness of essential oil-encapsulated biopolymer based nanoemulsions as mosquito spray formulations for fabric finishes
title_short Preparation, characterisation and effectiveness of essential oil-encapsulated biopolymer based nanoemulsions as mosquito spray formulations for fabric finishes
title_sort preparation characterisation and effectiveness of essential oil encapsulated biopolymer based nanoemulsions as mosquito spray formulations for fabric finishes
topic QD Chemistry
url https://ir.upsi.edu.my/detailsg.php?det=13266
work_keys_str_mv AT nurulnabilaainiabdullah preparationcharacterisationandeffectivenessofessentialoilencapsulatedbiopolymerbasednanoemulsionsasmosquitosprayformulationsforfabricfinishes