Development non-invasive blood type detector of spectral responsivity
| Main Author: | |
|---|---|
| Format: | Thesis |
| Language: | English |
| Published: |
2024
|
| Subjects: | |
| Online Access: | https://ir.upsi.edu.my/detailsg.php?det=13382 |
| Abstract | Abstract here |
| _version_ | 1855626386108055552 |
|---|---|
| author | Noor Aqma Mohd Yazid |
| author_facet | Noor Aqma Mohd Yazid |
| author_sort | Noor Aqma Mohd Yazid |
| description | |
| format | Thesis |
| id | upsi-13382 |
| institution | Universiti Pendidikan Sultan Idris |
| language | English |
| publishDate | 2024 |
| record_format | sWADAH |
| record_pdf | Restricted |
| spelling | upsi-133822025-10-06 Development non-invasive blood type detector of spectral responsivity 2024 Noor Aqma Mohd Yazid TJ Mechanical engineering and machinery <p>The conventional method of blood grouping, reliant on antigen-antibody reactions, entails invasive blood sampling and is susceptible to time-consuming procedures and potential mismatches, leading to severe consequences during transfusions. This study endeavors to develop a non-invasive human blood type detector, assessing spectral responsivity relative to blood types and comparing it with conventional methods. A cross-sectional descriptive study involving 120 participants was conducted, with the spectral responsivity serving as the dependent variable. The non-invasive detector, comprising input (power supply, OPT101, IR LED), processing (Arduino), and output (LCD Display) components, was employed. Participants, meeting inclusion criteria of healthy adults aged 18-50 with blood typing records, underwent trials using the setup, excluding those under anticoagulant medication, pregnant, or with blood cancer. Subjects placed their middle finger into the setup for comfortable positioning, undergoing three trials on each side to determine output voltage ranges for ABO Blood groups. Results revealed voltage ranges: Blood type A (0.10V - 0.15V), Blood type B (0.16V - 0.23V), Blood type O (0.00V - 0.09V), and Blood type AB (0.23V - 0.5V). The study signifies the potential of non-invasive blood typing technology in enhancing efficiency and accuracy in blood group detection.</p> 2024 thesis https://ir.upsi.edu.my/detailsg.php?det=13382 https://ir.upsi.edu.my/detailsg.php?det=13382 text eng - openAccess Masters Perpustakaan Tuanku Bainun Fakulti Teknikal dan Vokasional <p>Abdalla, S., Al-ameer, S. S., & Al-Magaishi, S. H. (2010). Electrical properties with relaxation through human blood. Biomicrofluidics, 4(3). https://doi.org/10.1063/1.3458908</p><p>Ahl, D., Eriksson, O., Sedin, J., Seignez, C., Schwan, E., Kreuger, J., Christoffersson, G., & Phillipson, M. (2019). Turning up the heat: Local temperaturecontrol during in vivo imaging of immune cells. Frontiers in Immunology, 10(AUG). https://doi.org/10.3389/fimmu.2019.02036</p><p>Althubaiti, A. (2023). Sample size determination: A practical guide for health researchers. Journal of General and Family Medicine, 24(2), 7278. https://doi.org/10.1002/jgf2.600</p><p>Amos, W. B., & White, J. G. (2003). How the Confocal Laser Scanning Microscope entered Biological Research. 95, 335342. https://doi.org/10.1016/S02484900(03)00078-9</p><p>Andrade, C. (2020). Sample size and its importance in research. Indian Journal of Psychological Medicine, 42(1), 102103. https://doi.org/10.4103/IJPSYM.IJPSYM_504_19</p><p>Anne D. Martens, R. (2014). Needle phobia can significantly affect the well-being of patients who are serviced by specialty Stacey Ness, PharmD, RPh, CSP, MSCS, AAHIVP, and Anne D. Martens, R. (2014). Needle phobia can significantly affect the well-being of patients who are serviced.</p><p>ARFA, S., & telecommunications, K. K.-J. of E. and. (2021). Blood Group Identification Using Deep Learning and Image Processing-a Review of Literature. Ijarst.In, 11(2), 13251327. https://www.ijarst.in/public/uploads/paper/946661634013564.pdf</p><p>Bajpai, M., Kaur, R., & Gupta, E. (2012). Automation in immunohematology. Asian Journal of Transfusion Science, 6(2), 140144. https://doi.org/10.4103/09736247.98914</p><p>Banu, A. N. (2018). An Automatic System To Detect Human Blood Group Of Many Individuals In A Parellel Manner Using Image Processing. 118(20), 31193127.</p><p>Bhatia, K., & Singh, M. (2015). Non-Invasive Techniques for Detection of Hemoglobin in Blood : A Review. 4(6), 19461949.</p><p>Bhuvaneswari, K., Visithra, M., & Deepa, S. K. (2021). IoT Based Non-Invasive Approach for Blood Group Detection using Led. 9(10), 7780.</p><p>Bularzik, T. M., Price, D., & Rivera, M. (2010). Accessible Blood GlucoseMonitor. Accessible Blood Glucose Monitor, 94.</p><p>Burnouf, T., Chou, M. L., Goubran, H., Cognasse, F., Garraud, O., & Seghatchian, J. (2015). An overview of the role of microparticles/microvesicles in blood components: Are they clinically beneficial or harmful? Transfusion and Apheresis Science, 53(2), 137145. https://doi.org/10.1016/j.transci.2015.10.010</p><p>Burr-Brown. (2015). Data sheet:OPT101 Monolithic Photodiode and Single-Supply Transimpedance Amplifier. Texas Instruments Incorporated, 131.</p><p>Cao, H., Mu, Y., Li, X., Wang, Y., Chen, S., & Liu, J. P. (2016). A systematic review of randomized controlled trials on oral Chinese herbal medicine for prostate cancer. PLoS ONE, 11(8), 116. https://doi.org/10.1371/journal.pone.0160253</p><p>Cousins, S., Blencowe, N. S., & Blazeby, J. M. (2019). What is an invasive procedure? A definition to inform study design, evidence synthesis and research tracking. BMJ Open, 9(7), 20182020. https://doi.org/10.1136/bmjopen-2018028576</p><p>Da Silva, J. A. T. (2021). Room temperature in scientific protocols and experiments should be defined: A reproducibility issue. BioTechniques, 70(6), 307309. https://doi.org/10.2144/btn-2020-0131</p><p>Dal Pont, M. P., & Marques, J. L. B. (2020). Reflective photoplethysmography acquisition platform with monitoring modules and noninvasive blood pressure calculation. IEEE Transactions on Instrumentation and Measurement, 69(8), 56495657. https://doi.org/10.1109/TIM.2019.2963508</p><p>Damborsk, P., vitel, J., & Katrlk, J. (2016). Optical biosensors. Essays in Biochemistry, 60(1), 91100. https://doi.org/10.1042/EBC20150010</p><p>Daniels, A. (2018). Field Guide to Infrared Systems, Detectors, and FPAs, Third Edition.</p><p>DeSimone, R. A., Costa, V. A., Kane, K., Sepulveda, J. L., Ellsworth, G. B., Gulick,R. M., Zucker, J., Sobieszcyk, M. E., Schwartz, J., & Cushing, M. M. (2021). Blood component utilization in COVID-19 patients in New York City: Transfusions do not follow the curve. Transfusion, 61(3), 692698. https://doi.org/10.1111/trf.16202</p><p>Doyle, A. J., Danaee, A., Furtado, C. I., Miller, S., Maggs, T., Robinson, S. E., & Retter, A. (2020). Blood component use in critical care in patients with COVID19 infection: a single-centre experience. British Journal of Haematology, 191(3), 382385. https://doi.org/10.1111/bjh.17007</p><p>Duguid, J. K. M. (1990). 8 Developing techniques in blood transfusion. Baillieres Clinical Haematology, 3(4), 9991017. https://doi.org/10.1016/S09503536(05)80144-1</p><p>Ferraz, A., Carvalho, V., & Soares, F. (2010). Development of a human blood type detection automatic system. Procedia Engineering, 5(December), 496499. https://doi.org/10.1016/j.proeng.2010.09.155</p><p>Feyisa, T., Kiya, G. T., & Maleko, W. A. (2021). Assessment of recipients characteristics, transfusion appropriateness, and utilization pattern of blood and blood products in Jimma Medical Center, Jimma, Ethiopia. PLoS ONE, 16(4 April), 117. https://doi.org/10.1371/journal.pone.0250623</p><p>Fidanboylu, K.a, * , and Efendioglu, H. S. . (2009). Distributed fiber-opticsensors and their applications. 5th International Advanced Technologies Symposium (IATS09), 16. https://doi.org/10.1201/b18074</p><p>Garratty, G. (2010). Advances in red blood cell immunology 1960 to 2009. Transfusion, 50(3), 526535. https://doi.org/10.1111/j.1537-2995.2009.02493.x</p><p>Giallorenzi, T. G., & Bucaro, J. A. (2017). Fiber-optic sensor technology. WI1.https://doi.org/10.1364/ofc.1981.wi1</p><p>Hansen, A. L., Kurach, J. D. R., Turner, T. R., Jenkins, C., Busch, M. P., Norris, P. J., Dugger, J., Tomasulo, P. A., Devine, D. V., & Acker, J. P. (2015). The effect of processing method on the in vitro characteristics of red blood cell products. Vox Sanguinis, 108(4), 350358. https://doi.org/10.1111/vox.12233</p><p>Haxha, S., & Jhoja, J. (2016). Optical Based Noninvasive Glucose Monitoring Sensor Prototype. IEEE Photonics Journal, 8(6), 110. https://doi.org/10.1109/JPHOT.2016.2616491</p><p>He, Y., Zhang, Y. Q., He, X., & Wang, X. Y. (2021). A new image encryption algorithm based on the OF-LSTMS and chaotic sequences. Scientific Reports, 11(1), 122. https://doi.org/10.1038/s41598-021-85377-1</p><p>Jaspard, F., Nadi, M., & Rouane, A. (2003). Dielectric properties of blood: An investigation of haematocrit dependence. Physiological Measurement, 24(1), 137147. https://doi.org/10.1088/0967-3334/24/1/310</p><p>Kakarla, P., Yaswanth, M., P, S., Kumar, R., & Pratibhan. (2014). Blood Group Detection Using Fiber Optics. TheIIER International Conference, Indonesia, 72 75.</p><p>Kakarla, P., Yaswanth, M., P, S., Kumar, R., Pratibhan, KumarB, A., Scholar, U., Professor, A., Engineering, C., Engineering, C., Rubi, J., Keerthana, A., Srividhya, G., Hemalatha, R. J., Bhuvaneswari, K., Visithra, M., Deepa, S. K., Liastra, S. M., Faadhillah, A., Naizathul Akmha S*3, K. N. (2019). Blood Group Detection Using Fiber Optics. TheIIER International Conference, Indonesia, 12(1), 7275. https://doi.org/10.3390/s121216557</p><p>Katsnelson, A. (2003). Current approaches to the study of movement control. PLoS Biology, 1(2), 161163. https://doi.org/10.1371/journal.pbio.0000050</p><p>Katti, S., Naragund, P., & Saradesai, V. (2015). MEMS based sensor for Blood group Investigation. Proceedings of the 2015 COMSOL Conference, 37.</p><p>Kim, J. (2021). Simultaneous voltage and current measurement instrumentation amplifier for ECG and PPG monitoring. Electronics (Switzerland), 10(6), 114.https://doi.org/10.3390/electronics10060679</p><p>Kondratov, K. A., Petrova, T. A., Mikhailovskii, V. Y., Ivanova, A. N., Kostareva, A. A., & Fedorov, A. V. (2017). A study of extracellular vesicles isolated from blood plasma conducted by low-voltage scanning electron microscopy. Cell and Tissue Biology, 11(3), 181190. https://doi.org/10.1134/S1990519X17030051</p><p>Kraitl, J., Ewald, H., & Gehring, H. (2005). An optical device to measureblood components by a photoplethysmographic method. Journal of Optics A: Pure and Applied Optics, 7(6). https://doi.org/10.1088/1464-4258/7/6/010</p><p>Langer, T., Ferrari, M., Zazzeron, L., Gattinoni, L., & Caironi, P. (2014). Effects of intravenous solutions on acid-base equilibrium: From crystalloids to colloids and blood components. Anaesthesiology Intensive Therapy, 46(5), 350360. https://doi.org/10.5603/AIT.2014.0059</p><p>Lee, J., & Wang, Y. L. (2020). Prognostic and Predictive Molecular Biomarkers in Chronic Lymphocytic Leukemia. Journal of Molecular Diagnostics, 22(9), 11141125. https://doi.org/10.1016/j.jmoldx.2020.06.004</p><p>Lopez, S. (2011). Freescale Application Note: Pulse Oximeter Fundamentals and Design.</p><p>Louis, L. (2016). Working Principle of Arduino and Using it as a Tool for Study and Research. International Journal of Control, Automation, Communication and Systems, 1(2), 2129. https://doi.org/10.5121/ijcacs.2016.1203</p><p>M, V. (2017). Automated Blood Group Detection System Using Image Processing. 6(4), 278282.</p><p>Malomgr, W., & Neumeister, B. (2009). Recent and future trends in blood group typing. Analytical and Bioanalytical Chemistry, 393(5), 14431451. https://doi.org/10.1007/s00216-008-2411-3</p><p>Marianne Belleza, R. N. (n.d.). Blood Anatomy and Physiology.</p><p>Mehare, G. S., Pinjarkar, C. G., Tembhe, A. V, & Khachane, N. S. (2018). A Noninvasive Way to Determine Blood Type Based on Image Processing. International Research Journal of Engineering and Technology, 20402043. http://www.ijmlc.org/papers/342-L472.pdf</p><p>Memon, M. A., Ting, H., Cheah, J. H., Thurasamy, R., Chuah, F., & Cham, T. H. (2020). Sample size for survey research: Review and recommendations. Journal of Applied Structural Equation Modeling, 4(2), ixx. https://doi.org/10.47263/jasem.4(2)01</p><p>Merriam-Webster.com Dictionary, M.-W. (2020a). invasive.</p><p>Merriam-Webster.com Dictionary, M.-W. (2020b). Non-Invasive.</p><p>Mete, B., Vanli, E., Yemisen, M., Balkan, I. I., Dagtekin, H., Ozaras, R., Saltoglu, N., Mert, A., Ozturk, R., & Tabak, F. (2012). The role of invasive and non-invasive procedures in diagnosing fever of unknown origin. International Journal of Medical Sciences, 9(8), 682689. https://doi.org/10.7150/ijms.4591</p><p>Moslemi, S., Ghotbi Ravandi, M. R., Zare, S., & Tohidi Nik, H. (2023). Measuring and assessing the effects of extremely low-frequency electromagnetic fields (ELF-EMF) on blood parameters and liver enzymes of personnel working in high voltage power stations in a petrochemical industry. Heliyon, 9(4), e15414. https://doi.org/10.1016/j.heliyon.2023.e15414</p><p>Naderi, M., & Kwong, R. W. M. (2020). A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. Environment International, 145(May), 106078. https://doi.org/10.1016/j.envint.2020.106078</p><p>Naizathul Akmha S*3, K. N. (2018). Non invasive blood group detection using light emitting diode. 119(15), 565574.</p><p>Nakamura, T., Shirouzu, T., Kawai, S., Imanishi, Y., Matsuyama, T., Harada, S., Nobori, S., Yoshimura, N., & Ushigome, H. (2019). Detection of Intragraft Anti-Blood Group A and B Antibodies Following Renal Transplantation. Transplantation Proceedings, 51(5), 13711377.https://doi.org/10.1016/j.transproceed.2019.01.128</p><p>Nishiyama, K., Okudera, T., Watanabe, T., Isobe, K., Suzuki, M., Masuki, H., Okudera, H., Uematsu, K., Nakata, K., & Kawase, T. (2016). Basic characteristics of plasma rich in growth factors (PRGF): blood cell components and biological effects. Clinical and Experimental Dental Research, 2(2), 96103. https://doi.org/10.1002/cre2.26</p><p>Operating Principle of CPC. (n.d.). http://www.dustmonitor.com/Research/Nano_broch/nano1.htm</p><p>Patel, T., Joshi, G., & Khambhati, D. (2019). Identification of Voltage Level Present in Blood during Mistransfusion of Blood. International Journal of Engineering Trends and Technology, 67(3), 9699. https://doi.org/10.14445/22315381/ijettv67i3p218</p><p>Pathan, R. A., & Rathod, R. A. (2017). Determination and Classification of Human Blood Types using SIFT Transform and SVM Classifier. Ijareeie, 5(1), 18. https://doi.org/10.15662/IJAREEIE.2016.0511031</p><p>Pedro, B. G., Marcndes, D. W. C., & Bertemes-Filho, P. (2020). Analytical model for blood glucose detection using electrical impedance spectroscopy. Sensors (Switzerland), 20(23), 111. https://doi.org/10.3390/s20236928</p><p>Perelman, I., Fergusson, D., Lampron, J., Mack, J., Rubens, F., Giulivi, A., Tokessy, M., Shorr, R., & Tinmouth, A. (2021). Exploring Peaks in Hospital Blood Component Utilization: A 10-Year Retrospective Study at a Large Multisite Academic Centre. Transfusion Medicine Reviews, 35(1), 3745. https://doi.org/10.1016/j.tmrv.2020.10.002</p><p>Pifferi, A., & Fisica, D. (2004). Optical biopsy of bone tissue : a step toward the diagnosis of bone pathologies. 9(3), 474480. https://doi.org/10.1117/1.1691029</p><p>Pifferi, A., Torricelli, A., Taroni, P., Bassi, A., Chikoidze, E., Giambattistelli, E., & Cubeddu, R. (2004). Optical biopsy of bone tissue: a step toward the diagnosis of bone pathologies. Journal of Biomedical Optics, 9(3), 474. https://doi.org/10.1117/1.1691029</p><p>Pinto, C., Parab, J., & Naik, G. (2020). Non-invasive hemoglobin measurement using embedded platform. Sensing and Bio-Sensing Research, 29(May), 100370. https://doi.org/10.1016/j.sbsr.2020.100370</p><p>Plapp, F. V., Sinor, L. T., & Rachel, J. M. (1989). The evolution of pretransfusion testing: From agglutination to solid-phase red cell adherence tests. Critical Reviews in Clinical Laboratory Sciences, 27(2), 179209. https://doi.org/10.3109/10408368909106593</p><p>Prasad, M., Sumaiya, M. N., Naikodi, S. M., Triveni, A., Gireesh, Y. S., & Prakash,T. (n.d.). Non-Invasive Blood Group Detection Using CNN. 10(3), 8084.</p><p>Project, B. O. T. (Rice U. ). (n.d.). Anatomy and Physiology.</p><p>Quirino, M. G., Colli, C. M., Macedo, L. C., Sell, A. M., & Visentainer, J. E. L. (2019). Methods for blood group antigens detection: cost-effectiveness analysis of phenotyping and genotyping. Hematology, Transfusion and Cell Therapy, 41(1), 4449. https://doi.org/10.1016/j.htct.2018.06.006</p><p>Satoh, K., & Itoh, Y. (2006). Forensic ABO blood grouping by 4 SNPs analyses using an ABI PRISM 3100 genetic analyzer. International Congress Series, 1288, 4951. https://doi.org/10.1016/j.ics.2005.08.034</p><p>Schermelleh, L., Heintzmann, R., & Leonhardt, H. (2010). A guide to super-resolution fluorescence microscopy. 190(2), 165175. https://doi.org/10.1083/jcb.201002018</p><p>Schwan, H. P. (1983). Electrical properties of blood and its constitutents:Alternating current spectroscopy. Blut, 46(4), 185197. https://doi.org/10.1007/BF00320638</p><p>Solves, P., Lozano, M., Zhiburt, E., Anguita Velasco, J., Maria Prez-Corral, A., Monsalvo-Saornil, S., Yamazaki, S., Okazaki, H., Selleng, K., Aurich, K., Krger, W., Buser, A., Holbro, A., Infanti, L., Stehle, G., Pierelli, L., Matteocci, A., Rigacci, L., DeVooght, K. M. K., Dunbar, N. (2021). International Forum on Transfusion Practices in Haematopoietic Stem-Cell Transplantation: Summary. Vox Sanguinis, 116(5), 609612. https://doi.org/10.1111/vox.13061</p><p>Stojanovic, R. D., Karadaglic, D. M., Perakis, K., Lutovac, B. M., Haritou, M., & Koutsoris, D. (2008). Led-led ppg-spo 2 sensor-actuator. Biomedical Engineering, Isbme, 328331.</p><p>Sultan, E., Albahrani, M., Alostad, J., Ebraheem, H. K., Alnaser, M., & Alkhateeb, N. (2019). Novel optical biosensor method to identify human blood types using free-space frequency-modulated wave of NIR photon technology. Medical Devices: Evidence and Research, 12, 920. https://doi.org/10.2147/MDER.S181796</p><p>T.M. Selvakumari. (2011). Blood Group Detection Using Fiber Optics. Armenian Journal of Physics, 4(3), 165168.</p><p>Teissie, J. (1993). New clinical applications of electricity. In Presse medicale (Paris, France : 1983) (Vol. 22, Issue 24).</p><p>Tewabe, H., Mitiku, A., & Worku, H. (2022). Assessment of Blood Transfusion Utilization and Patient Outcomes at Yekatit-12 Hospital, Addis Ababa, Ethiopia. Journal of Blood Medicine, 13, 171180. https://doi.org/10.2147/JBM.S355178</p><p>Tovey, G. H. (1969). Automated blood group serology. Journal of Clinical Pathology, S2-3(1), 3438. https://doi.org/10.1136/jcp.s2-3.1.34</p><p>Turgeon, V., Kertzscher, G., Carroll, L., Hopewell, R., Massarweh, G., & Enger, S.A. (2019). Characterization of scintillating fibers for use as positron detector in positron emission tomography. Physica Medica, 65(August), 114120. https://doi.org/10.1016/j.ejmp.2019.08.009</p><p>Version, D. (1992). University of Groningen Electric properties of blood and impedance cardiography Visser, Klaas Rinse.</p><p>Wang, E. J., Li, W., Hawkins, D., Gernsheimer, T., Norby-Slycord, C., & Patel, S. N. (2017). HemaApp. GetMobile: Mobile Computing and Communications, 21(2), 2630. https://doi.org/10.1145/3131214.3131223</p><p>Wang, J., Rousseau, A., Eizner, E., Phaneuf-LHeureux, A. L., Schue, L., Francoeur,S., & Kna-Cohen, S. (2019). Spectral Responsivity and Photoconductive Gain in Thin Film Black Phosphorus Photodetectors. ACS Photonics, 6(12), 3092 3099. https://doi.org/10.1021/acsphotonics.9b00951</p><p>Zelepukin, I. V., Yaremenko, A. V., Yuryev, M. V., Mirkasymov, A. B., Sokolov, I. L., Deyev, S. M., Nikitin, P. I., & Nikitin, M. P. (2020). Fast processes of nanoparticle blood clearance: Comprehensive study. Journal of Controlled Release, 326, 181191. https://doi.org/10.1016/j.jconrel.2020.07.014</p><p>Zhang, H., Qiu, X., Zou, Y., Ye, Y., Qi, C., Zou, L., Yang, X., Yang, K., Zhu, Y., Yang, Y., Zhou, Y., & Luo, Y. (2017). A dye-assisted paper-based point-of-care assay for fast and reliable blood grouping. Science Translational Medicine, 9(381). https://doi.org/10.1126/scitranslmed.aaf9209</p><p>Zhao, G., Joca, H. C., Nelson, M. T., & Lederer, W. J. (2020). ATP-And voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proceedings of the National Academy of Sciences of the United States of America, 117(13), 74617470. https://doi.org/10.1073/pnas.1922095117</p><p></p><p></p> |
| spellingShingle | TJ Mechanical engineering and machinery Noor Aqma Mohd Yazid Development non-invasive blood type detector of spectral responsivity |
| thesis_level | Master |
| title | Development non-invasive blood type detector of spectral responsivity |
| title_full | Development non-invasive blood type detector of spectral responsivity |
| title_fullStr | Development non-invasive blood type detector of spectral responsivity |
| title_full_unstemmed | Development non-invasive blood type detector of spectral responsivity |
| title_short | Development non-invasive blood type detector of spectral responsivity |
| title_sort | development non invasive blood type detector of spectral responsivity |
| topic | TJ Mechanical engineering and machinery |
| url | https://ir.upsi.edu.my/detailsg.php?det=13382 |
| work_keys_str_mv | AT nooraqmamohdyazid developmentnoninvasivebloodtypedetectorofspectralresponsivity |
