Time Series Prediction Using Recurrent Neural Networks And Boosting: An Experimental Study In Pharmaceutical Product Formulation

Tesis ini berpusat pada perkembangan teknik Rangkaian Neural Buatan (ANN) dalam menyelesaikan masalah-masalah ramalan siri masa. Penyelidikan ini tertumpu kepada penggunaan·- rangkaian-rangkaian neural perulangan yang menyediakan satu kerangka yang menyeluruh bagi fonnulasi produk fannasi melalui...

وصف كامل

التفاصيل البيبلوغرافية
المؤلف الرئيسي: Goh, Wei Yee
التنسيق: أطروحة
اللغة:الإنجليزية
منشور في: 2002
الموضوعات:
الوصول للمادة أونلاين:http://eprints.usm.my/30471/
Abstract Abstract here
_version_ 1854967130989002752
author Goh, Wei Yee
author_facet Goh, Wei Yee
author_sort Goh, Wei Yee
description Tesis ini berpusat pada perkembangan teknik Rangkaian Neural Buatan (ANN) dalam menyelesaikan masalah-masalah ramalan siri masa. Penyelidikan ini tertumpu kepada penggunaan·- rangkaian-rangkaian neural perulangan yang menyediakan satu kerangka yang menyeluruh bagi fonnulasi produk fannasi melalui pendekatan ramalan siri masa. Khususnya, kerangka ini telah menjelajahi paradigma pembelajaran ANN dalam mengendalikan perancangan eksperimen dan analisis. Berdasarkan kepada kaedah-kaedah yang sedia ada, reka bentuk ANN yang baru dicadangkan untuk analisis siri masa di dalam proses formulasi produk fannasi. This thesis is devoted to the development of Artificial Neural Network (ANN) techniques for solving time-series prediction problems. The research is focused on the use of recurrent neural networks for devising a comprehensible framework for pharmaceutical product formulation using time series prediction approach. In particular, the framework explores the learning paradigms of ANNs for conducting the experimental design and analysis. Based upon existing methodologies, novel ANN architectures are proposed for time series analyses in the process of pharmac~utical product formulation.
first_indexed 2025-10-17T08:06:20Z
format Thesis
id usm-30471
institution Universiti Sains Malaysia
language English
last_indexed 2025-10-17T08:06:20Z
publishDate 2002
record_format eprints
record_pdf Abstract
spelling usm-304712017-05-31T05:06:45Z http://eprints.usm.my/30471/ Time Series Prediction Using Recurrent Neural Networks And Boosting: An Experimental Study In Pharmaceutical Product Formulation Goh, Wei Yee TK1-9971 Electrical engineering. Electronics. Nuclear engineering Tesis ini berpusat pada perkembangan teknik Rangkaian Neural Buatan (ANN) dalam menyelesaikan masalah-masalah ramalan siri masa. Penyelidikan ini tertumpu kepada penggunaan·- rangkaian-rangkaian neural perulangan yang menyediakan satu kerangka yang menyeluruh bagi fonnulasi produk fannasi melalui pendekatan ramalan siri masa. Khususnya, kerangka ini telah menjelajahi paradigma pembelajaran ANN dalam mengendalikan perancangan eksperimen dan analisis. Berdasarkan kepada kaedah-kaedah yang sedia ada, reka bentuk ANN yang baru dicadangkan untuk analisis siri masa di dalam proses formulasi produk fannasi. This thesis is devoted to the development of Artificial Neural Network (ANN) techniques for solving time-series prediction problems. The research is focused on the use of recurrent neural networks for devising a comprehensible framework for pharmaceutical product formulation using time series prediction approach. In particular, the framework explores the learning paradigms of ANNs for conducting the experimental design and analysis. Based upon existing methodologies, novel ANN architectures are proposed for time series analyses in the process of pharmac~utical product formulation. 2002-05 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/30471/1/GOHWEIYEE.pdf Goh, Wei Yee (2002) Time Series Prediction Using Recurrent Neural Networks And Boosting: An Experimental Study In Pharmaceutical Product Formulation. Masters thesis, Universiti Sains Malaysia.
spellingShingle TK1-9971 Electrical engineering. Electronics. Nuclear engineering
Goh, Wei Yee
Time Series Prediction Using Recurrent Neural Networks And Boosting: An Experimental Study In Pharmaceutical Product Formulation
title Time Series Prediction Using Recurrent Neural Networks And Boosting: An Experimental Study In Pharmaceutical Product Formulation
title_full Time Series Prediction Using Recurrent Neural Networks And Boosting: An Experimental Study In Pharmaceutical Product Formulation
title_fullStr Time Series Prediction Using Recurrent Neural Networks And Boosting: An Experimental Study In Pharmaceutical Product Formulation
title_full_unstemmed Time Series Prediction Using Recurrent Neural Networks And Boosting: An Experimental Study In Pharmaceutical Product Formulation
title_short Time Series Prediction Using Recurrent Neural Networks And Boosting: An Experimental Study In Pharmaceutical Product Formulation
title_sort time series prediction using recurrent neural networks and boosting an experimental study in pharmaceutical product formulation
topic TK1-9971 Electrical engineering. Electronics. Nuclear engineering
url http://eprints.usm.my/30471/
work_keys_str_mv AT gohweiyee timeseriespredictionusingrecurrentneuralnetworksandboostinganexperimentalstudyinpharmaceuticalproductformulation