Investigation Of Magnesium Doped Calcium Copper Titanate (Cacu3ti4o12) On Ca And Cu Site Prepared By Solid State Reaction Method

In this research, the effect of magnesium (Mg) dopant on dielectric properties of CaCu3Ti4O12 (CCTO) was investigated. Undoped CCTO and Mg-doped CCTO on Ca and Cu site (Ca1-xMgxCu3Ti4O12 and CaCu3-xMgxTi4O12 have been prepared by solid state reaction method. Starting materials of CaCO3, CuO, TiO2 an...

पूर्ण विवरण

ग्रंथसूची विवरण
मुख्य लेखक: Rahman, Mohd Fariz Ab
स्वरूप: थीसिस
भाषा:अंग्रेज़ी
प्रकाशित: 2013
विषय:
ऑनलाइन पहुंच:http://eprints.usm.my/45148/
_version_ 1846216836535812096
author Rahman, Mohd Fariz Ab
author_facet Rahman, Mohd Fariz Ab
author_sort Rahman, Mohd Fariz Ab
description In this research, the effect of magnesium (Mg) dopant on dielectric properties of CaCu3Ti4O12 (CCTO) was investigated. Undoped CCTO and Mg-doped CCTO on Ca and Cu site (Ca1-xMgxCu3Ti4O12 and CaCu3-xMgxTi4O12 have been prepared by solid state reaction method. Starting materials of CaCO3, CuO, TiO2 and MgO were wet milled for 1 hour by using three wetting agents which are acetone, deionized water and ethanol. XRD analysis on calcined powders shows the formation of CaCu3Ti4O12 (CCTO) phase with present of minor secondary phases (CuO and TiO2). Mixing process in deionized water gave better mixing and produces higher intensity of CCTO phase after calcined at 900°C for 12 hours. Compacted pellet was sintered at 1020°C, 1030°C and 1040°C for 10 hours. The sintering profile of 1030°C/10 hours was identified as an optimum parameter in the formation of single phase of CCTO with fine grain growth, high density and low porosity. MgO composition had been verified from 1 until 10 mole percent for Ca and Cu site of CCTO structure. SEM images show that the grain size becomes larger with increasing the concentration of dopant. Density and porosity of sintered samples were improved by dopant.
first_indexed 2025-10-17T08:26:19Z
format Thesis
id usm-45148
institution Universiti Sains Malaysia
language English
last_indexed 2025-10-17T08:26:19Z
publishDate 2013
record_format eprints
spelling usm-451482019-08-01T07:49:39Z http://eprints.usm.my/45148/ Investigation Of Magnesium Doped Calcium Copper Titanate (Cacu3ti4o12) On Ca And Cu Site Prepared By Solid State Reaction Method Rahman, Mohd Fariz Ab TN1-997 Mining engineering. Metallurgy In this research, the effect of magnesium (Mg) dopant on dielectric properties of CaCu3Ti4O12 (CCTO) was investigated. Undoped CCTO and Mg-doped CCTO on Ca and Cu site (Ca1-xMgxCu3Ti4O12 and CaCu3-xMgxTi4O12 have been prepared by solid state reaction method. Starting materials of CaCO3, CuO, TiO2 and MgO were wet milled for 1 hour by using three wetting agents which are acetone, deionized water and ethanol. XRD analysis on calcined powders shows the formation of CaCu3Ti4O12 (CCTO) phase with present of minor secondary phases (CuO and TiO2). Mixing process in deionized water gave better mixing and produces higher intensity of CCTO phase after calcined at 900°C for 12 hours. Compacted pellet was sintered at 1020°C, 1030°C and 1040°C for 10 hours. The sintering profile of 1030°C/10 hours was identified as an optimum parameter in the formation of single phase of CCTO with fine grain growth, high density and low porosity. MgO composition had been verified from 1 until 10 mole percent for Ca and Cu site of CCTO structure. SEM images show that the grain size becomes larger with increasing the concentration of dopant. Density and porosity of sintered samples were improved by dopant. 2013-02 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/45148/1/Mohd%20Fariz%20Bin%20Ab%20Rahman24.pdf Rahman, Mohd Fariz Ab (2013) Investigation Of Magnesium Doped Calcium Copper Titanate (Cacu3ti4o12) On Ca And Cu Site Prepared By Solid State Reaction Method. Masters thesis, Universiti Sains Malaysia.
spellingShingle TN1-997 Mining engineering. Metallurgy
Rahman, Mohd Fariz Ab
Investigation Of Magnesium Doped Calcium Copper Titanate (Cacu3ti4o12) On Ca And Cu Site Prepared By Solid State Reaction Method
title Investigation Of Magnesium Doped Calcium Copper Titanate (Cacu3ti4o12) On Ca And Cu Site Prepared By Solid State Reaction Method
title_full Investigation Of Magnesium Doped Calcium Copper Titanate (Cacu3ti4o12) On Ca And Cu Site Prepared By Solid State Reaction Method
title_fullStr Investigation Of Magnesium Doped Calcium Copper Titanate (Cacu3ti4o12) On Ca And Cu Site Prepared By Solid State Reaction Method
title_full_unstemmed Investigation Of Magnesium Doped Calcium Copper Titanate (Cacu3ti4o12) On Ca And Cu Site Prepared By Solid State Reaction Method
title_short Investigation Of Magnesium Doped Calcium Copper Titanate (Cacu3ti4o12) On Ca And Cu Site Prepared By Solid State Reaction Method
title_sort investigation of magnesium doped calcium copper titanate cacu3ti4o12 on ca and cu site prepared by solid state reaction method
topic TN1-997 Mining engineering. Metallurgy
url http://eprints.usm.my/45148/
work_keys_str_mv AT rahmanmohdfarizab investigationofmagnesiumdopedcalciumcoppertitanatecacu3ti4o12oncaandcusitepreparedbysolidstatereactionmethod