Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media

Over the years incorporation of chitosan in the matrices of elastomers has been of interest to researchers. However, solubility of chitosan in acidic aqueous media in contrast with epoxidized natural rubber which is not soluble has been a limitation. This has prompted us to investigate and hereby re...

पूर्ण विवरण

ग्रंथसूची विवरण
मुख्य लेखक: Raju, Gunasunderi
स्वरूप: थीसिस
भाषा:अंग्रेज़ी
प्रकाशित: 2014
विषय:
ऑनलाइन पहुंच:http://eprints.usm.my/46106/
Abstract Abstract here
_version_ 1854968354591211520
author Raju, Gunasunderi
author_facet Raju, Gunasunderi
author_sort Raju, Gunasunderi
description Over the years incorporation of chitosan in the matrices of elastomers has been of interest to researchers. However, solubility of chitosan in acidic aqueous media in contrast with epoxidized natural rubber which is not soluble has been a limitation. This has prompted us to investigate and hereby report our findings on the preparation, characterization, and the properties of three types of biocomposites containing chitosan (CTS) and epoxidized natural rubber (ENR) prepared via different methods. The first type, CTS-g-ENR, was obtained via acid-induced reaction of ENR50 with CTS in the presence of AlCl3.6H2O. Moreover, the NMR spectral analysis revealed that the epoxy content of CTS-g-ENR-P1 is 22.36%, suggesting that the grafting of CTS onto the backbone of the ENR had occurred. This revelation is affirmed by the presence of the characteristic absorption bands of CTS and ENR and the appearance of new bands at 1219, 902, and 733 cm-1 in the infrared spectrum of CTS-g-ENR-P1. The Tg of CTS-g-ENR-P2 is determined to be 2.88 °C which is significantly higher than that of ENR50 (-27.2 °C). The thermal stability of CTS-g-ENR is found to be higher compared to that of CTS, but lower than the one for ENR50. SEM micrographs of CTS-g-ENR-P1 show a smooth topographical texture with no phased-out entity, confirming that CTS has been successfully grafted onto the backbone of the ENR.
first_indexed 2025-10-17T08:28:57Z
format Thesis
id usm-46106
institution Universiti Sains Malaysia
language English
last_indexed 2025-10-17T08:28:57Z
publishDate 2014
record_format eprints
record_pdf Abstract
spelling usm-461062020-02-06T05:51:19Z http://eprints.usm.my/46106/ Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media Raju, Gunasunderi TP1-1185 Chemical technology Over the years incorporation of chitosan in the matrices of elastomers has been of interest to researchers. However, solubility of chitosan in acidic aqueous media in contrast with epoxidized natural rubber which is not soluble has been a limitation. This has prompted us to investigate and hereby report our findings on the preparation, characterization, and the properties of three types of biocomposites containing chitosan (CTS) and epoxidized natural rubber (ENR) prepared via different methods. The first type, CTS-g-ENR, was obtained via acid-induced reaction of ENR50 with CTS in the presence of AlCl3.6H2O. Moreover, the NMR spectral analysis revealed that the epoxy content of CTS-g-ENR-P1 is 22.36%, suggesting that the grafting of CTS onto the backbone of the ENR had occurred. This revelation is affirmed by the presence of the characteristic absorption bands of CTS and ENR and the appearance of new bands at 1219, 902, and 733 cm-1 in the infrared spectrum of CTS-g-ENR-P1. The Tg of CTS-g-ENR-P2 is determined to be 2.88 °C which is significantly higher than that of ENR50 (-27.2 °C). The thermal stability of CTS-g-ENR is found to be higher compared to that of CTS, but lower than the one for ENR50. SEM micrographs of CTS-g-ENR-P1 show a smooth topographical texture with no phased-out entity, confirming that CTS has been successfully grafted onto the backbone of the ENR. 2014-02 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/46106/1/Gunasunderi%20AP%20Raju24.pdf Raju, Gunasunderi (2014) Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media. PhD thesis, Universiti Sains Malaysia.
spellingShingle TP1-1185 Chemical technology
Raju, Gunasunderi
Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
title Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
title_full Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
title_fullStr Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
title_full_unstemmed Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
title_short Preparation And Characterization Of Chitosan-Enr50 Biocomposites And Their Potential Application As Slow-Release Biodegradable Matrices For Cu(Ii) And 2-Naphthol In Aqueous Media
title_sort preparation and characterization of chitosan enr50 biocomposites and their potential application as slow release biodegradable matrices for cu ii and 2 naphthol in aqueous media
topic TP1-1185 Chemical technology
url http://eprints.usm.my/46106/
work_keys_str_mv AT rajugunasunderi preparationandcharacterizationofchitosanenr50biocompositesandtheirpotentialapplicationasslowreleasebiodegradablematricesforcuiiand2naphtholinaqueousmedia