Dynamical Analysis Of Fractional-Order Rosenzweig-Macarthur Models

In this thesis, three extended fractional order Rosenzweig-MacArthur (R-M) models are considered: i) a two-species R-M model incorporating a prey refuge; ii) a three species R-M model with a prey refuge; iii) a three-species R-M model with stage structure and a prey refuge. The models are constru...

Full description

Bibliographic Details
Main Author: Mohamed Al E, Elshahed Mahmoud Moustafa
Format: Thesis
Language:English
Published: 2018
Subjects:
Online Access:http://eprints.usm.my/47495/
Abstract Abstract here
_version_ 1854968535858544640
author Mohamed Al E, Elshahed Mahmoud Moustafa
author_facet Mohamed Al E, Elshahed Mahmoud Moustafa
author_sort Mohamed Al E, Elshahed Mahmoud Moustafa
description In this thesis, three extended fractional order Rosenzweig-MacArthur (R-M) models are considered: i) a two-species R-M model incorporating a prey refuge; ii) a three species R-M model with a prey refuge; iii) a three-species R-M model with stage structure and a prey refuge. The models are constructed and analyzed in detail. The existence, uniqueness, non-negativity and boundedness of the solutions as well as the local and global asymptotic stability of the equilibrium points are studied. Sufficient conditions for the stability and the occurrence of Hopf bifurcation for these fractional order R-M models are demonstrated. The impacts of fractional order and prey refuge on the stability of these systems are also studied both theoretically and by using numerical simulations. The results indicate that the outcomes of R-M fractional order model are more stable than its integer counterpart model because the domain of stability in the fractional order model is larger than the domain for the corresponding integer order model. Rosenzweig in a paper published in 1971 highlighted that increasing the carrying capacity of the prey (i.e. enriching the systems) may lead to destroy the steady state. This is known as the paradox of enrichment. In this study, it was found that the introduction of fractional order to the R-M models can lead to stabilization of the species ecosystems and thus resolve the paradox of enrichment.
first_indexed 2025-10-17T08:32:09Z
format Thesis
id usm-47495
institution Universiti Sains Malaysia
language English
last_indexed 2025-10-17T08:32:09Z
publishDate 2018
record_format eprints
record_pdf Abstract
spelling usm-474952020-10-12T06:41:08Z http://eprints.usm.my/47495/ Dynamical Analysis Of Fractional-Order Rosenzweig-Macarthur Models Mohamed Al E, Elshahed Mahmoud Moustafa QA1 Mathematics (General) In this thesis, three extended fractional order Rosenzweig-MacArthur (R-M) models are considered: i) a two-species R-M model incorporating a prey refuge; ii) a three species R-M model with a prey refuge; iii) a three-species R-M model with stage structure and a prey refuge. The models are constructed and analyzed in detail. The existence, uniqueness, non-negativity and boundedness of the solutions as well as the local and global asymptotic stability of the equilibrium points are studied. Sufficient conditions for the stability and the occurrence of Hopf bifurcation for these fractional order R-M models are demonstrated. The impacts of fractional order and prey refuge on the stability of these systems are also studied both theoretically and by using numerical simulations. The results indicate that the outcomes of R-M fractional order model are more stable than its integer counterpart model because the domain of stability in the fractional order model is larger than the domain for the corresponding integer order model. Rosenzweig in a paper published in 1971 highlighted that increasing the carrying capacity of the prey (i.e. enriching the systems) may lead to destroy the steady state. This is known as the paradox of enrichment. In this study, it was found that the introduction of fractional order to the R-M models can lead to stabilization of the species ecosystems and thus resolve the paradox of enrichment. 2018-08 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/47495/1/Elshahed%20Mahmoud%20Moustafa%20Mohamed%20Al%20E%20-%20DYNAMICAL%20ANALYSIS%20OF.pdf Mohamed Al E, Elshahed Mahmoud Moustafa (2018) Dynamical Analysis Of Fractional-Order Rosenzweig-Macarthur Models. Masters thesis, Universiti Sains Malaysia.
spellingShingle QA1 Mathematics (General)
Mohamed Al E, Elshahed Mahmoud Moustafa
Dynamical Analysis Of Fractional-Order Rosenzweig-Macarthur Models
title Dynamical Analysis Of Fractional-Order Rosenzweig-Macarthur Models
title_full Dynamical Analysis Of Fractional-Order Rosenzweig-Macarthur Models
title_fullStr Dynamical Analysis Of Fractional-Order Rosenzweig-Macarthur Models
title_full_unstemmed Dynamical Analysis Of Fractional-Order Rosenzweig-Macarthur Models
title_short Dynamical Analysis Of Fractional-Order Rosenzweig-Macarthur Models
title_sort dynamical analysis of fractional order rosenzweig macarthur models
topic QA1 Mathematics (General)
url http://eprints.usm.my/47495/
work_keys_str_mv AT mohamedaleelshahedmahmoudmoustafa dynamicalanalysisoffractionalorderrosenzweigmacarthurmodels