Enhancing Model Selection Based On Penalized Regression Methods And Empirical Mode Decomposition
In this study, the penalized regularization methods, namely, the smoothly clipped absolute deviation (SCAD), adaptive least absolute shrinkage and selection operator (adLASSO) regression, minimax concave penalty (MCP) and elastic net (ELNET) regression, are adopted. Those methods are combined with t...
| 第一著者: | |
|---|---|
| フォーマット: | 学位論文 |
| 言語: | 英語 |
| 出版事項: |
2021
|
| 主題: | |
| オンライン・アクセス: | http://eprints.usm.my/51620/ |