A region-based Principal Component Analysis (PCA) technique for medical image compression

Principal Component Analysis (PCA) is capable of completely decorrelating input data in the transform domain. However, PCA is limited in image compression because there is a need to encode the eigenvectors of the input data and thereby affects the rate-distortion performance. In an effort to improve...

Full description

Bibliographic Details
Main Author: Lim, Sin Ting
Format: Thesis
Language:English
English
Published: 2022
Subjects:
Online Access:http://eprints.utem.edu.my/id/eprint/26876/
https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=122202
Abstract Abstract here
_version_ 1855750100930789376
author Lim, Sin Ting
author_facet Lim, Sin Ting
author_sort Lim, Sin Ting
description Principal Component Analysis (PCA) is capable of completely decorrelating input data in the transform domain. However, PCA is limited in image compression because there is a need to encode the eigenvectors of the input data and thereby affects the rate-distortion performance. In an effort to improve rate-distortion performance, this work proposed a block-to-row PCA (BTRPCA) algorithm that employs the eigenvectors from the model image of the same image modality coupled with a row vectorization approach. Region-based compression schemes that reduce storage space while preserving the image quality of the region of interest (ROI) are receiving attention due to the increase in medical imaging data. While PCA is inherently limited by its matrix form, the Arbitrary ROI coding (ARC) proposed in this work models the ROI by means of a factorization approach and the arbitrary-shaped ROI contours and NROI are compressed using BTRPCA. In order to minimize user interaction, an automated brain segmentation technique based on midsagittal plane (MSP) and Absolute Difference Map (ADM) is then incorporated into the proposed Automated Arbitrary PCA (AAPCA). The presented result showed that BTRPCA achieves PSNR improvements of up to 10 dB compared to its PCA counterparts. The ARC outperforms JPEG, Embedded Zerotree Wavelet (EZW) and Embedded Block Coding With Optimized Truncation (EBCOT) at all tested bit rates with an average PSNR improvements of 6 dB, 18 dB and 12 dB respectively. Subjective performance analysis was in agreement with the objective performance analysis in which the AAPCA is capable of extending beyond the compression limits of the conventional PCA algorithm and that the quality of the surroundings of ROI is degrading gracefully at bpp as low as 0.25. The research has successfully developed an improved region-based compression scheme for medical images where lossy and lossless compression is implemented in one PCA architecture. Continuation of this study include using different encoding schemes to boost the rate-distortion performance and extraction of multiple ROI.
format Thesis
id utem-26876
institution Universiti Teknikal Malaysia Melaka
language English
English
publishDate 2022
record_format EPrints
record_pdf Restricted
spelling utem-268762023-07-03T12:31:24Z http://eprints.utem.edu.my/id/eprint/26876/ A region-based Principal Component Analysis (PCA) technique for medical image compression Lim, Sin Ting T Technology (General) TA Engineering (General). Civil engineering (General) Principal Component Analysis (PCA) is capable of completely decorrelating input data in the transform domain. However, PCA is limited in image compression because there is a need to encode the eigenvectors of the input data and thereby affects the rate-distortion performance. In an effort to improve rate-distortion performance, this work proposed a block-to-row PCA (BTRPCA) algorithm that employs the eigenvectors from the model image of the same image modality coupled with a row vectorization approach. Region-based compression schemes that reduce storage space while preserving the image quality of the region of interest (ROI) are receiving attention due to the increase in medical imaging data. While PCA is inherently limited by its matrix form, the Arbitrary ROI coding (ARC) proposed in this work models the ROI by means of a factorization approach and the arbitrary-shaped ROI contours and NROI are compressed using BTRPCA. In order to minimize user interaction, an automated brain segmentation technique based on midsagittal plane (MSP) and Absolute Difference Map (ADM) is then incorporated into the proposed Automated Arbitrary PCA (AAPCA). The presented result showed that BTRPCA achieves PSNR improvements of up to 10 dB compared to its PCA counterparts. The ARC outperforms JPEG, Embedded Zerotree Wavelet (EZW) and Embedded Block Coding With Optimized Truncation (EBCOT) at all tested bit rates with an average PSNR improvements of 6 dB, 18 dB and 12 dB respectively. Subjective performance analysis was in agreement with the objective performance analysis in which the AAPCA is capable of extending beyond the compression limits of the conventional PCA algorithm and that the quality of the surroundings of ROI is degrading gracefully at bpp as low as 0.25. The research has successfully developed an improved region-based compression scheme for medical images where lossy and lossless compression is implemented in one PCA architecture. Continuation of this study include using different encoding schemes to boost the rate-distortion performance and extraction of multiple ROI. 2022 Thesis NonPeerReviewed text en http://eprints.utem.edu.my/id/eprint/26876/1/A%20region-based%20principal%20component%20analysis%20%28PCA%29%20technique%20for%20medical%20image%20compression.pdf text en http://eprints.utem.edu.my/id/eprint/26876/2/A%20region-based%20principal%20component%20analysis%20%28PCA%29%20technique%20for%20medical%20image%20compression.pdf Lim, Sin Ting (2022) A region-based Principal Component Analysis (PCA) technique for medical image compression. Doctoral thesis, Universiti Teknikal Malaysia Melaka. https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=122202
spellingShingle T Technology (General)
TA Engineering (General). Civil engineering (General)
Lim, Sin Ting
A region-based Principal Component Analysis (PCA) technique for medical image compression
thesis_level PhD
title A region-based Principal Component Analysis (PCA) technique for medical image compression
title_full A region-based Principal Component Analysis (PCA) technique for medical image compression
title_fullStr A region-based Principal Component Analysis (PCA) technique for medical image compression
title_full_unstemmed A region-based Principal Component Analysis (PCA) technique for medical image compression
title_short A region-based Principal Component Analysis (PCA) technique for medical image compression
title_sort region based principal component analysis pca technique for medical image compression
topic T Technology (General)
TA Engineering (General). Civil engineering (General)
url http://eprints.utem.edu.my/id/eprint/26876/
https://plh.utem.edu.my/cgi-bin/koha/opac-detail.pl?biblionumber=122202
work_keys_str_mv AT limsinting aregionbasedprincipalcomponentanalysispcatechniqueformedicalimagecompression
AT limsinting regionbasedprincipalcomponentanalysispcatechniqueformedicalimagecompression