Compact and interpretable convolutional neural network architecture for electroencephalogram based motor imagery decoding
Recently, due to the popularity of deep learning, the applicability of deep Neural Networks (DNN) algorithms such as the convolutional neural networks (CNN) has been explored in decoding electroencephalogram (EEG) for Brain-Computer Interface (BCI) applications. This allows decoding of the EEG signa...
| 主要作者: | |
|---|---|
| 格式: | Thesis |
| 语言: | 英语 |
| 出版: |
2022
|
| 主题: | |
| 在线阅读: | http://eprints.utm.my/101969/1/TarmiziAhmadIzzuddinPSKE2022.pdf.pdf |