Neural network for prediction of cysteine disulphide bridge connectivity in proteins

The goal of this thesis is to develop a computational method based on machine learning techniques for predicting disulfide-bonding states of Cysteine residues in proteins, which is a sub-problem of the bigger and yet unsolved problem of protein structure prediction. First, we preprocessed the datase...

詳細記述

書誌詳細
第一著者: Bostan, Hamed
フォーマット: 学位論文
言語:英語
出版事項: 2010
主題:
オンライン・アクセス:http://eprints.utm.my/18275/1/HamedBostanMFSKSM2010.pdf