Numerical solution of fractional partial differential equations by spectral methods

Fractional partial differential equations (FPDEs) have become essential tool for the modeling of physical models by using spectral methods. In the last few decades, spectral methods have been developed for the solution of time and space dimensional FPDEs. There are different types of spectral method...

Full description

Bibliographic Details
Main Author: Kanwal, Afshan
Format: Thesis
Language:English
English
English
Published: 2019
Subjects:
Online Access:http://eprints.uthm.edu.my/44/
Abstract Abstract here
_version_ 1855520995455008768
author Kanwal, Afshan
author_facet Kanwal, Afshan
author_sort Kanwal, Afshan
description Fractional partial differential equations (FPDEs) have become essential tool for the modeling of physical models by using spectral methods. In the last few decades, spectral methods have been developed for the solution of time and space dimensional FPDEs. There are different types of spectral methods such as collocation methods, Tau methods and Galerkin methods. This research work focuses on the collocation and Tau methods to propose an efficient operational matrix methods via Genocchi polynomials and Legendre polynomials for the solution of two and three dimensional FPDEs. Moreover, in this study, Genocchi wavelet-like basis method and Genocchi polynomials based Ritz- Galerkin method have been derived to deal with FPDEs and variable- order FPDEs. The reason behind using the Genocchi polynomials is that, it helps to generate functional expansions with less degree and small coefficients values to derive the operational matrix of derivative with less computational complexity as compared to Chebyshev and Legendre Polynomials. The results have been compared with the existing methods such as Chebyshev wavelets method, Legendre wavelets method, Adomian decomposition method, Variational iteration method, Finite difference method and Finite element method. The numerical results have revealed that the proposed methods have provided the better results as compared to existing methods due to minimum computational complexity of derived operational matrices via Genocchi polynomials. Additionally, the significance of the proposed methods has been verified by finding the error bound, which shows that the proposed methods have provided better approximation values for under consideration FPDEs.
format Thesis
id uthm-44
institution Universiti Tun Hussein Onn Malaysia
language English
English
English
publishDate 2019
record_format EPrints
record_pdf Restricted
spelling uthm-442021-06-22T03:21:33Z http://eprints.uthm.edu.my/44/ Numerical solution of fractional partial differential equations by spectral methods Kanwal, Afshan QA Mathematics Fractional partial differential equations (FPDEs) have become essential tool for the modeling of physical models by using spectral methods. In the last few decades, spectral methods have been developed for the solution of time and space dimensional FPDEs. There are different types of spectral methods such as collocation methods, Tau methods and Galerkin methods. This research work focuses on the collocation and Tau methods to propose an efficient operational matrix methods via Genocchi polynomials and Legendre polynomials for the solution of two and three dimensional FPDEs. Moreover, in this study, Genocchi wavelet-like basis method and Genocchi polynomials based Ritz- Galerkin method have been derived to deal with FPDEs and variable- order FPDEs. The reason behind using the Genocchi polynomials is that, it helps to generate functional expansions with less degree and small coefficients values to derive the operational matrix of derivative with less computational complexity as compared to Chebyshev and Legendre Polynomials. The results have been compared with the existing methods such as Chebyshev wavelets method, Legendre wavelets method, Adomian decomposition method, Variational iteration method, Finite difference method and Finite element method. The numerical results have revealed that the proposed methods have provided the better results as compared to existing methods due to minimum computational complexity of derived operational matrices via Genocchi polynomials. Additionally, the significance of the proposed methods has been verified by finding the error bound, which shows that the proposed methods have provided better approximation values for under consideration FPDEs. 2019-09 Thesis NonPeerReviewed text en http://eprints.uthm.edu.my/44/1/24p%20AFSHAN%20KANWAL.pdf text en http://eprints.uthm.edu.my/44/2/AFSHAN%20KANWAL%20COPYRIGHT%20DECLARATION.pdf text en http://eprints.uthm.edu.my/44/3/AFSHAN%20KANWAL%20WATERMARK.pdf Kanwal, Afshan (2019) Numerical solution of fractional partial differential equations by spectral methods. Doctoral thesis, Universiti Tun Hussein Onn Malaysia.
spellingShingle QA Mathematics
Kanwal, Afshan
Numerical solution of fractional partial differential equations by spectral methods
thesis_level PhD
title Numerical solution of fractional partial differential equations by spectral methods
title_full Numerical solution of fractional partial differential equations by spectral methods
title_fullStr Numerical solution of fractional partial differential equations by spectral methods
title_full_unstemmed Numerical solution of fractional partial differential equations by spectral methods
title_short Numerical solution of fractional partial differential equations by spectral methods
title_sort numerical solution of fractional partial differential equations by spectral methods
topic QA Mathematics
url http://eprints.uthm.edu.my/44/
work_keys_str_mv AT kanwalafshan numericalsolutionoffractionalpartialdifferentialequationsbyspectralmethods