Improved adaptive semi-unsupervised weighted oversampling (IA-SUWO) using sparsity factor for imbalanced datasets

The imbalanced data problem is common in data mining nowadays due to the skewed nature of data, which impact the classification process negatively in machine learning. For preprocessing, oversampling techniques significantly benefitted the imbalanced domain, in which artificial data is generated in...

Full description

Bibliographic Details
Main Author: Ali, Haseeb
Format: Thesis
Language:English
English
English
Published: 2019
Subjects:
Online Access:http://eprints.uthm.edu.my/504/
Abstract Abstract here
_version_ 1855520270758969344
author Ali, Haseeb
author_facet Ali, Haseeb
author_sort Ali, Haseeb
description The imbalanced data problem is common in data mining nowadays due to the skewed nature of data, which impact the classification process negatively in machine learning. For preprocessing, oversampling techniques significantly benefitted the imbalanced domain, in which artificial data is generated in minority class to enhance the number of samples and balance the distribution of samples in both classes. However, existing oversampling techniques encounter through overfitting and over-generalization problems which lessen the classifier performance. Although many clustering based oversampling techniques significantly overcome these problems but most of these techniques are not able to produce the appropriate number of synthetic samples in minority clusters. This study proposed an improved Adaptive Semi-unsupervised Weighted Oversampling (IA-SUWO) technique, using the sparsity factor which determine the sparse minority samples in each minority cluster. This technique consider the sparse minority samples which are far from the decision boundary. These samples also carry the important information for learning of minority class, if these samples are also considered for oversampling, imbalance ratio will be more reduce also it could enhance the learnability of the classifiers. The outcomes of the proposed approach have been compared with existing oversampling techniques such as SMOTE, Borderline-SMOTE, Safe-level SMOTE, and standard A-SUWO technique in terms of accuracy. As aforementioned, the comparative analysis revealed that the proposed oversampling approach performance increased in average by 5% from 85% to 90% than the existing comparative techniques.
format Thesis
id uthm-504
institution Universiti Tun Hussein Onn Malaysia
language English
English
English
publishDate 2019
record_format EPrints
record_pdf Restricted
spelling uthm-5042021-07-25T07:55:34Z http://eprints.uthm.edu.my/504/ Improved adaptive semi-unsupervised weighted oversampling (IA-SUWO) using sparsity factor for imbalanced datasets Ali, Haseeb QA75-76.95 Calculating machines The imbalanced data problem is common in data mining nowadays due to the skewed nature of data, which impact the classification process negatively in machine learning. For preprocessing, oversampling techniques significantly benefitted the imbalanced domain, in which artificial data is generated in minority class to enhance the number of samples and balance the distribution of samples in both classes. However, existing oversampling techniques encounter through overfitting and over-generalization problems which lessen the classifier performance. Although many clustering based oversampling techniques significantly overcome these problems but most of these techniques are not able to produce the appropriate number of synthetic samples in minority clusters. This study proposed an improved Adaptive Semi-unsupervised Weighted Oversampling (IA-SUWO) technique, using the sparsity factor which determine the sparse minority samples in each minority cluster. This technique consider the sparse minority samples which are far from the decision boundary. These samples also carry the important information for learning of minority class, if these samples are also considered for oversampling, imbalance ratio will be more reduce also it could enhance the learnability of the classifiers. The outcomes of the proposed approach have been compared with existing oversampling techniques such as SMOTE, Borderline-SMOTE, Safe-level SMOTE, and standard A-SUWO technique in terms of accuracy. As aforementioned, the comparative analysis revealed that the proposed oversampling approach performance increased in average by 5% from 85% to 90% than the existing comparative techniques. 2019-12 Thesis NonPeerReviewed text en http://eprints.uthm.edu.my/504/1/24p%20HASEEB%20ALI.pdf text en http://eprints.uthm.edu.my/504/2/HASEEB%20ALI%20COPYRIGHT%20DECLARATION.pdf text en http://eprints.uthm.edu.my/504/3/HASEEB%20ALI%20WATERMARK.pdf Ali, Haseeb (2019) Improved adaptive semi-unsupervised weighted oversampling (IA-SUWO) using sparsity factor for imbalanced datasets. Masters thesis, Universiti Tun Hussein Onn Malaysia.
spellingShingle QA75-76.95 Calculating machines
Ali, Haseeb
Improved adaptive semi-unsupervised weighted oversampling (IA-SUWO) using sparsity factor for imbalanced datasets
thesis_level Master
title Improved adaptive semi-unsupervised weighted oversampling (IA-SUWO) using sparsity factor for imbalanced datasets
title_full Improved adaptive semi-unsupervised weighted oversampling (IA-SUWO) using sparsity factor for imbalanced datasets
title_fullStr Improved adaptive semi-unsupervised weighted oversampling (IA-SUWO) using sparsity factor for imbalanced datasets
title_full_unstemmed Improved adaptive semi-unsupervised weighted oversampling (IA-SUWO) using sparsity factor for imbalanced datasets
title_short Improved adaptive semi-unsupervised weighted oversampling (IA-SUWO) using sparsity factor for imbalanced datasets
title_sort improved adaptive semi unsupervised weighted oversampling ia suwo using sparsity factor for imbalanced datasets
topic QA75-76.95 Calculating machines
url http://eprints.uthm.edu.my/504/
work_keys_str_mv AT alihaseeb improvedadaptivesemiunsupervisedweightedoversamplingiasuwousingsparsityfactorforimbalanceddatasets