Voronoi classfied and clustered constellation data structure for three-dimensional urban buildings

In the past few years, the growth of urban area has been increasing and has resulted immense number of urban datasets. This situation contributes to the difficulties in handling and managing issues related to urban area. Huge and massive datasets can degrade the performance of data retrieval and inf...

وصف كامل

التفاصيل البيبلوغرافية
المؤلف الرئيسي: Azri, Nor Suhaibah
التنسيق: أطروحة
اللغة:الإنجليزية
منشور في: 2017
الموضوعات:
الوصول للمادة أونلاين:http://eprints.utm.my/78844/1/NorSuhaibahAzriPFGHT2017.pdf
_version_ 1846218012634382336
author Azri, Nor Suhaibah
author_facet Azri, Nor Suhaibah
author_sort Azri, Nor Suhaibah
description In the past few years, the growth of urban area has been increasing and has resulted immense number of urban datasets. This situation contributes to the difficulties in handling and managing issues related to urban area. Huge and massive datasets can degrade the performance of data retrieval and information analysis. In addition, urban environments are very difficult to manage because they involved with various types of data, such as multiple types of zoning themes in urban mixeduse development. Thus, a special technique for efficient data handling and management is necessary. In this study, a new three-dimensional (3D) spatial access method, the Voronoi Classified and Clustered Data Constellation (VOR-CCDC) is introduced. The VOR-CCDC data structure operates on the basis of two filters, classification and clustering. To boost up the performance of data retrieval, VORCCDC offers a minimal percentage of overlap among nodes and a minimal coverage area in order to avoid repetitive data entry and multi-path queries. Besides that, VOR-CCDC data structure is supplemented with an extra element of nearest neighbour information. Encoded neighbouring information in the Voronoi diagram allows VOR-CCDC to optimally explore the data. There are three types of nearest neighbour queries that are presented in this study to verify the VOR-CCDC’s ability in finding the nearest neighbour information. The queries are Single Search Nearest Neighbour query, k Nearest Neighbour (kNN) query and Reverse k Nearest Neighbour (RkNN) query. Each query is tested with two types of 3D datasets; single layer and multi-layer. The test demonstrated that VOR-CCDC performs the least amount of input/output than their best competitor, the 3D R-Tree. Besides that, VOR-CCDC is also tested for performance evaluation. The results indicate that VOR-CCDC outperforms its competitor by responding 60 to 80 percent faster to the query operation. In the future, VOR-CCDC structure is expected to be expanded for temporal and dynamic objects. Besides that, VOR-CCDC structure can also be used in other applications such as brain cell database for analysing the spatial arrangement of neurons or analysing the protein chain reaction in bioinformatics applications.
format Thesis
id uthm-78844
institution Universiti Teknologi Malaysia
language English
publishDate 2017
record_format eprints
spelling uthm-788442018-09-17T04:21:10Z http://eprints.utm.my/78844/ Voronoi classfied and clustered constellation data structure for three-dimensional urban buildings Azri, Nor Suhaibah G70.212-70.215 Geographic information system In the past few years, the growth of urban area has been increasing and has resulted immense number of urban datasets. This situation contributes to the difficulties in handling and managing issues related to urban area. Huge and massive datasets can degrade the performance of data retrieval and information analysis. In addition, urban environments are very difficult to manage because they involved with various types of data, such as multiple types of zoning themes in urban mixeduse development. Thus, a special technique for efficient data handling and management is necessary. In this study, a new three-dimensional (3D) spatial access method, the Voronoi Classified and Clustered Data Constellation (VOR-CCDC) is introduced. The VOR-CCDC data structure operates on the basis of two filters, classification and clustering. To boost up the performance of data retrieval, VORCCDC offers a minimal percentage of overlap among nodes and a minimal coverage area in order to avoid repetitive data entry and multi-path queries. Besides that, VOR-CCDC data structure is supplemented with an extra element of nearest neighbour information. Encoded neighbouring information in the Voronoi diagram allows VOR-CCDC to optimally explore the data. There are three types of nearest neighbour queries that are presented in this study to verify the VOR-CCDC’s ability in finding the nearest neighbour information. The queries are Single Search Nearest Neighbour query, k Nearest Neighbour (kNN) query and Reverse k Nearest Neighbour (RkNN) query. Each query is tested with two types of 3D datasets; single layer and multi-layer. The test demonstrated that VOR-CCDC performs the least amount of input/output than their best competitor, the 3D R-Tree. Besides that, VOR-CCDC is also tested for performance evaluation. The results indicate that VOR-CCDC outperforms its competitor by responding 60 to 80 percent faster to the query operation. In the future, VOR-CCDC structure is expected to be expanded for temporal and dynamic objects. Besides that, VOR-CCDC structure can also be used in other applications such as brain cell database for analysing the spatial arrangement of neurons or analysing the protein chain reaction in bioinformatics applications. 2017-01 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/78844/1/NorSuhaibahAzriPFGHT2017.pdf Azri, Nor Suhaibah (2017) Voronoi classfied and clustered constellation data structure for three-dimensional urban buildings. PhD thesis, Universiti Teknologi Malaysia, Faculty of Geoinformation and Real Estate. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:105971
spellingShingle G70.212-70.215 Geographic information system
Azri, Nor Suhaibah
Voronoi classfied and clustered constellation data structure for three-dimensional urban buildings
title Voronoi classfied and clustered constellation data structure for three-dimensional urban buildings
title_full Voronoi classfied and clustered constellation data structure for three-dimensional urban buildings
title_fullStr Voronoi classfied and clustered constellation data structure for three-dimensional urban buildings
title_full_unstemmed Voronoi classfied and clustered constellation data structure for three-dimensional urban buildings
title_short Voronoi classfied and clustered constellation data structure for three-dimensional urban buildings
title_sort voronoi classfied and clustered constellation data structure for three dimensional urban buildings
topic G70.212-70.215 Geographic information system
url http://eprints.utm.my/78844/1/NorSuhaibahAzriPFGHT2017.pdf
url-record http://eprints.utm.my/78844/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:105971
work_keys_str_mv AT azrinorsuhaibah voronoiclassfiedandclusteredconstellationdatastructureforthreedimensionalurbanbuildings