Pembangunan ontologi kanser payudara bagi pemilihan data dalam meramal risiko

Also available in printed version : RC280.B8 F38 2014 raf

Bibliographic Details
Main Author: Fatimatufaridah Jusoh
Other Authors: Mohd. Shahizan Othman, supervisor
Format: Master's thesis
Published: Universiti Teknologi Malaysia 2025
Subjects:
Online Access:https://utmik.utm.my/handle/123456789/100192
Abstract Abstract here
_version_ 1852582460014985216
author Fatimatufaridah Jusoh
author2 Mohd. Shahizan Othman, supervisor
author_facet Mohd. Shahizan Othman, supervisor
Fatimatufaridah Jusoh
author_sort Fatimatufaridah Jusoh
description Also available in printed version : RC280.B8 F38 2014 raf
format Master's thesis
id utm-123456789-100192
institution Universiti Teknologi Malaysia
publishDate 2025
publisher Universiti Teknologi Malaysia
record_format dspace
record_pdf Abstract
spelling utm-123456789-1001922025-08-21T03:33:16Z Pembangunan ontologi kanser payudara bagi pemilihan data dalam meramal risiko Fatimatufaridah Jusoh Mohd. Shahizan Othman, supervisor Breast -- Cancer Also available in printed version : RC280.B8 F38 2014 raf Breast cancer is a deadly disease caused by the uncontrolled growth of cells that starts in the breast. Therefore, the accurate risk prediction is crucial in assisting the selection for the suitable prevention treatment, depending on the level of the risk. However, the abundance of biomedical data from various sources creates difficulty in data organizing. In addition, the big challenge in predicting the risk of breast cancer is the different attributes of the datasets which make it inscrutable for someone who are not from the domain background. Ontology is a new method introduced to improve the knowledge discovery in complex database. Ontology approach was applied in this study to resolve this problem by providing clearer understanding of the data. In this study, ontology was also used to select important features for data analysis. Classification technique of Sequential Minimal Optimization (SMO) was also applied in this study. SMO is a fast learning algorithm of Support Vector Machine (SVM) and able to provide high accuracy results. However, the analysis of breast cancer risk shows that data analysis without ontology has slightly higher accuracy compared to data analysis with ontology, where, the first dataset is 94.7% compared to 92.1% and the accuracy for the second dataset is 96.7% compared to 96.6%. These results were different from expectation, which the application of ontology was supposed to be able to provide higher accuracy results. This is caused by the limitation of data available for this study. Therefore, the study on breast cancer risk prediction by using ontology can be improved in the future by using broader cancer data and consistent cancer data type zulaihi UTM 171 p. Thesis (Sarjana Sains (Sains Komputer)) - Universiti Teknologi Malaysia, 2014 2025-04-10T03:45:39Z 2025-04-10T03:45:39Z 2014 Master's thesis https://utmik.utm.my/handle/123456789/100192 valet-20160106-145255 vital:83077 Closed Access UTM Complete Unpublished application/pdf Universiti Teknologi Malaysia
spellingShingle Breast -- Cancer
Fatimatufaridah Jusoh
Pembangunan ontologi kanser payudara bagi pemilihan data dalam meramal risiko
title Pembangunan ontologi kanser payudara bagi pemilihan data dalam meramal risiko
title_full Pembangunan ontologi kanser payudara bagi pemilihan data dalam meramal risiko
title_fullStr Pembangunan ontologi kanser payudara bagi pemilihan data dalam meramal risiko
title_full_unstemmed Pembangunan ontologi kanser payudara bagi pemilihan data dalam meramal risiko
title_short Pembangunan ontologi kanser payudara bagi pemilihan data dalam meramal risiko
title_sort pembangunan ontologi kanser payudara bagi pemilihan data dalam meramal risiko
topic Breast -- Cancer
url https://utmik.utm.my/handle/123456789/100192
work_keys_str_mv AT fatimatufaridahjusoh pembangunanontologikanserpayudarabagipemilihandatadalammeramalrisiko