Estimating distribution parameters of extreme event using TL-moment method

Also available in printed version : QA273.6 N36 2014 raf

التفاصيل البيبلوغرافية
المؤلف الرئيسي: Nur Amalina Mat Jan
مؤلفون آخرون: Ani Shabri, supervisor
التنسيق: Master's thesis
منشور في: Universiti Teknologi Malaysia 2025
الموضوعات:
الوصول للمادة أونلاين:https://utmik.utm.my/handle/123456789/101698
Abstract Abstract here
_version_ 1854934146365784064
author Nur Amalina Mat Jan
author2 Ani Shabri, supervisor
author_facet Ani Shabri, supervisor
Nur Amalina Mat Jan
author_sort Nur Amalina Mat Jan
description Also available in printed version : QA273.6 N36 2014 raf
format Master's thesis
id utm-123456789-101698
institution Universiti Teknologi Malaysia
publishDate 2025
publisher Universiti Teknologi Malaysia
record_format dspace
record_pdf Abstract
spelling utm-123456789-1016982025-08-21T09:43:21Z Estimating distribution parameters of extreme event using TL-moment method Nur Amalina Mat Jan Ani Shabri, supervisor Distribution (Probability theory) Monte Carlo method Also available in printed version : QA273.6 N36 2014 raf Good knowledge of flood magnitude and frequency is necessary in designing different types of flood protection projects. The use of flood frequency analysis (FFA) can help hydrologists in mitigating the problem of extreme flooding. The main problem in hydrologic design faced by the hydrologists is the estimation of high flow quantile. L-Moments, popular among hydrologist in FFA, is said to be over sensitive towards the lower part of the distribution and gives insufficient weight to large sample values. As an alternative, the trimmed L-Moments (TL-moments) method is proposed to be used in FFA since it has the ability to give zero weight on the extreme values. The aim of this study is to compare the performance of L-moments, TL-moments (1,0), TL-moments (2,0), TL-moments (3,0) and TL-moments (4,0) in FFA application. The four distributions, named generalized logistic (GLO), generalized extreme value (GEV), three parameter lognormal (LN3), and Pearson 3 (P3) distributions, were chosen and an estimation of the distributions using TL-moments (r,0), r = 1, 2, 3, 4 was formulated. The comparison is done using Monte Carlo simulation and annual maximum streamflow data over stations in Peninsular Malaysia. Simulation results show that TL-moments give comparable and better parameter estimates than those by L-moments, particularly when estimating the high flow quantiles. Furthermore, the generalized extreme value (GEV) and three parameters lognormal (LN3) distributions obtained from TL-moments method suit with the actual maximum streamflows of stations in Johor atiff UTM 154 p. Thesis (Sarjana Sains (Matematik)) - Universiti Teknologi Malaysia, 2014 2025-04-10T04:56:02Z 2025-04-10T04:56:02Z 2014 Master's thesis https://utmik.utm.my/handle/123456789/101698 valet-20160127-145857 vital:83871 Closed Access UTM Complete Unpublished application/pdf Universiti Teknologi Malaysia
spellingShingle Distribution (Probability theory)
Monte Carlo method
Nur Amalina Mat Jan
Estimating distribution parameters of extreme event using TL-moment method
thesis_level Master
title Estimating distribution parameters of extreme event using TL-moment method
title_full Estimating distribution parameters of extreme event using TL-moment method
title_fullStr Estimating distribution parameters of extreme event using TL-moment method
title_full_unstemmed Estimating distribution parameters of extreme event using TL-moment method
title_short Estimating distribution parameters of extreme event using TL-moment method
title_sort estimating distribution parameters of extreme event using tl moment method
topic Distribution (Probability theory)
Monte Carlo method
url https://utmik.utm.my/handle/123456789/101698
work_keys_str_mv AT nuramalinamatjan estimatingdistributionparametersofextremeeventusingtlmomentmethod