Skip to content
MyTheses
  • Feedback
  • Book Bag: 0 items (Full)
  • HOME
  • MYTHESES
  • BLOG
  • AI ASSISTANT
  • INSTITUTION
  • GUIDE & TUTORIAL
  • CONTACT
    • English
    • Français
    • 日本語
    • 中文(简体)
    • 中文(繁體)
    • اللغة العربية
    • हिंदी
Advanced
  • Modelling doubly interval cens...
  • Cite this
  • Text this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Add to Book Bag Remove from Book Bag
  • Permanent link

QR Code

Modelling doubly interval censored survival data via the log logistic distribution with covariate

Bibliographic Details
Main Author: Loh, Yue Fang
Format: Thesis
Language:English
Published: 2017
Subjects:
Mathematics
Mathematical models
Online Access:http://psasir.upm.edu.my/id/eprint/92503/1/FS%202018%2036%20-T.pdf
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

http://psasir.upm.edu.my/id/eprint/92503/1/FS%202018%2036%20-T.pdf

Similar Items

  • Parametric survival models with time-dependent covariate for mixed case interval-censored data
    by: Kiani, Kaveh
    Published: (2012)
  • Inferential procedures on log-normal model for left-truncated and case-k interval censored data with covariates
    by: Manoharan, Thirunanthini
    Published: (2017)
  • Inference and diagnostics for generalized exponential distribution with fixed and time-dependent covariates and interval censored data
    by: Al Hakeem, Hussein Ali Ghaffoori
    Published: (2022)
  • Semiparametric inference procedure for the accelarated failure time model with interval-censored data
    by: Karimi, Mostafa
    Published: (2019)
  • Inferential procedures for the generalized exponential model having covariate, with right and interval censored data
    by: Alharbi, Nada Mohammedsaeed M.
    Published: (2023)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs