Skip to content
MyTheses
  • Feedback
  • Book Bag: 0 items (Full)
  • HOME
  • MYTHESES
  • BLOG
  • AI ASSISTANT
  • GUIDE & TUTORIAL
  • CONTACT
    • English
    • Français
    • 日本語
    • 中文(简体)
    • 中文(繁體)
    • اللغة العربية
    • हिंदी
Advanced
  • An Improved Water Quality Pred...
  • Cite this
  • Text this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Add to Book Bag Remove from Book Bag
  • Permanent link

QR Code

An Improved Water Quality Prediction Model with Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System Ensemble

Bibliographic Details
Main Author: Yafra, Khan
Format: Thesis
Language:English
Published: Universiti Malaysia Sarawak, (UNIMAS) 2018
Subjects:
QA75 Electronic computers. Computer science
Online Access:http://ir.unimas.my/id/eprint/24899/
Abstract Abstract here
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

http://ir.unimas.my/id/eprint/24899/

Similar Items

  • Crop yield prediction using artificial neural networks and adaptive neuro-fuzzy inference system
    by: Zu’ain Zaizura Sofian
    Published: (2025)
  • Optimizing Adaptive Neuro Fuzzy Inference System (Anfis) With Dragonfly Algorithm For Cardiovascular Disease
    by: Jinjiri, Wada Mohammed
    Published: (2023)
  • Predicting online banking fraud using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    by: Zammarah, Nuha
    Published: (2024)
  • Covid-19 Misinformation Classification On Twitter In Malaysia Using A Hybrid Adaptive Neuro-Fuzzy Inferences System (Anfis) And Deep Neural Network (Dnn)
    by: Ravichandran, Bhavani Devi
    Published: (2023)
  • Health status estimation of transceiver testing machine using adaptive neuro fuzzy inference system
    by: Muhammad Amzari Najmi
    Published: (2025)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs