Improved Stereo Vision Algorithms For Robot Navigation

The main motivation of this research is to find the best depth and direction for navigating a robot using stereo vision by solving the difficulties in finding disparity value for low information, noisy and tilted images as problem statement. An adaptive window method is implemented in three approach...

पूर्ण विवरण

ग्रंथसूची विवरण
मुख्य लेखक: Ranjbaran, Ali
स्वरूप: थीसिस
भाषा:अंग्रेज़ी
प्रकाशित: 2013
विषय:
ऑनलाइन पहुंच:http://eprints.usm.my/45047/
_version_ 1846216820821852160
author Ranjbaran, Ali
author_facet Ranjbaran, Ali
author_sort Ranjbaran, Ali
description The main motivation of this research is to find the best depth and direction for navigating a robot using stereo vision by solving the difficulties in finding disparity value for low information, noisy and tilted images as problem statement. An adaptive window method is implemented in three approaches. Approach 1 and 2 use common cost functions such as SSD, SAD and GB (gradient). Approach 3 uses a Linear-based function. By using adaptive method, the error in computing the disparity value for SSD is 12%, for Gradient-based is 10% and for Linear-based is 7%. SSD is 8 and 2 times faster than Gradient-based and Linear-based functions respectively. The linear-based technique with 50% more accurate than SSD is a suitable tool for stereo vision applications. The proposed denoising method for Lena and Barbara images are compared with ROF model by computing Total Variation (TV). When TV is 0.88 for noisy Lena image, ROF reduces TV to 0.21, Linear-based and Gradient-based decreases TV to 0.24 and 0.26 respectively. When TV is 0.88 for noisy Barbara image, TV is decreased to 0.68 by ROF, 0.62 by Linear-based and 0.65 by Gradient-based techniques. A stable platform system is designed and developed for stabilizing vision line horizontally for a moving robot. The system is equipped by a closed loop tilt and pan stabilizer using a dual-axis accelerometer sensor. It stabilizes the tilt and pan angles with 0.5 second time constant and steady state error lower that 0.025 radian. By using adaptive stereo matching that uses linear cost function, the quality of the best direction for navigation is improved to 88% of success rate.
first_indexed 2025-10-17T08:26:04Z
format Thesis
id usm-45047
institution Universiti Sains Malaysia
language English
last_indexed 2025-10-17T08:26:04Z
publishDate 2013
record_format eprints
spelling usm-450472019-07-24T07:05:05Z http://eprints.usm.my/45047/ Improved Stereo Vision Algorithms For Robot Navigation Ranjbaran, Ali TK1-9971 Electrical engineering. Electronics. Nuclear engineering The main motivation of this research is to find the best depth and direction for navigating a robot using stereo vision by solving the difficulties in finding disparity value for low information, noisy and tilted images as problem statement. An adaptive window method is implemented in three approaches. Approach 1 and 2 use common cost functions such as SSD, SAD and GB (gradient). Approach 3 uses a Linear-based function. By using adaptive method, the error in computing the disparity value for SSD is 12%, for Gradient-based is 10% and for Linear-based is 7%. SSD is 8 and 2 times faster than Gradient-based and Linear-based functions respectively. The linear-based technique with 50% more accurate than SSD is a suitable tool for stereo vision applications. The proposed denoising method for Lena and Barbara images are compared with ROF model by computing Total Variation (TV). When TV is 0.88 for noisy Lena image, ROF reduces TV to 0.21, Linear-based and Gradient-based decreases TV to 0.24 and 0.26 respectively. When TV is 0.88 for noisy Barbara image, TV is decreased to 0.68 by ROF, 0.62 by Linear-based and 0.65 by Gradient-based techniques. A stable platform system is designed and developed for stabilizing vision line horizontally for a moving robot. The system is equipped by a closed loop tilt and pan stabilizer using a dual-axis accelerometer sensor. It stabilizes the tilt and pan angles with 0.5 second time constant and steady state error lower that 0.025 radian. By using adaptive stereo matching that uses linear cost function, the quality of the best direction for navigation is improved to 88% of success rate. 2013-07 Thesis NonPeerReviewed application/pdf en http://eprints.usm.my/45047/1/Ali%20Ranjbaran24.pdf Ranjbaran, Ali (2013) Improved Stereo Vision Algorithms For Robot Navigation. PhD thesis, Universiti Sains Malaysia.
spellingShingle TK1-9971 Electrical engineering. Electronics. Nuclear engineering
Ranjbaran, Ali
Improved Stereo Vision Algorithms For Robot Navigation
title Improved Stereo Vision Algorithms For Robot Navigation
title_full Improved Stereo Vision Algorithms For Robot Navigation
title_fullStr Improved Stereo Vision Algorithms For Robot Navigation
title_full_unstemmed Improved Stereo Vision Algorithms For Robot Navigation
title_short Improved Stereo Vision Algorithms For Robot Navigation
title_sort improved stereo vision algorithms for robot navigation
topic TK1-9971 Electrical engineering. Electronics. Nuclear engineering
url http://eprints.usm.my/45047/
work_keys_str_mv AT ranjbaranali improvedstereovisionalgorithmsforrobotnavigation