Features extraction of heart sounds using timefrequency distribution and mel-frequency cepstrum coefficient

Heart sounds analysis can provide lots of information about heart condition whether it is normal or abnormal. Heart sounds signals are time-varying signals where they exhibit some degree of non-stationary. Due to these characteristics, therefore, two techniques have been proposed to analyze them. Th...

Description complète

Détails bibliographiques
Auteur principal: Mohamed, Masnani
Format: Thèse
Langue:anglais
Publié: 2006
Sujets:
Accès en ligne:http://eprints.utm.my/2724/1/MasnaniMohamedMFKE2006.pdf
_version_ 1846214973702799360
author Mohamed, Masnani
author_facet Mohamed, Masnani
author_sort Mohamed, Masnani
description Heart sounds analysis can provide lots of information about heart condition whether it is normal or abnormal. Heart sounds signals are time-varying signals where they exhibit some degree of non-stationary. Due to these characteristics, therefore, two techniques have been proposed to analyze them. The first technique is the Time-Frequency Distribution using B-Distribution, used to resolve signal’s components in the time-frequency domain and specifies the frequency components of the signal that changing over time. Another proposed technique is the Mel- Frequency Cepstrum Coefficient, used to obtain the cepstrums coefficients by resolving signal’s components in the frequency domain. An experiment is presented to extract features of heart sounds using both mentioned techniques and compare their performances. Both techniques are discussed in details and tested against ideal simulations of 50 heart sound signals including normal and abnormal signals. All simulations are done using Matlab software except for MFCC where it has used the Microsoft Visual C++ software. A brief description of SVD is included to the technique using time-frequency distribution. Also, a brief description of Neural Network is used to verify and to compare the performances results of the two techniques with regard to the values of hidden node, learning rate and momentum coefficient. The results showed that performance of the TFD can be achieved up to 90% whereas MFCC is only 80%. Therefore, the TFD technique is chosen as the best technique to analyze and to extract features of the non-stationary signals such as the heart sounds signals
format Thesis
id uthm-2724
institution Universiti Teknologi Malaysia
language English
publishDate 2006
record_format eprints
spelling uthm-27242018-09-17T03:03:04Z http://eprints.utm.my/2724/ Features extraction of heart sounds using timefrequency distribution and mel-frequency cepstrum coefficient Mohamed, Masnani TK Electrical engineering. Electronics Nuclear engineering Heart sounds analysis can provide lots of information about heart condition whether it is normal or abnormal. Heart sounds signals are time-varying signals where they exhibit some degree of non-stationary. Due to these characteristics, therefore, two techniques have been proposed to analyze them. The first technique is the Time-Frequency Distribution using B-Distribution, used to resolve signal’s components in the time-frequency domain and specifies the frequency components of the signal that changing over time. Another proposed technique is the Mel- Frequency Cepstrum Coefficient, used to obtain the cepstrums coefficients by resolving signal’s components in the frequency domain. An experiment is presented to extract features of heart sounds using both mentioned techniques and compare their performances. Both techniques are discussed in details and tested against ideal simulations of 50 heart sound signals including normal and abnormal signals. All simulations are done using Matlab software except for MFCC where it has used the Microsoft Visual C++ software. A brief description of SVD is included to the technique using time-frequency distribution. Also, a brief description of Neural Network is used to verify and to compare the performances results of the two techniques with regard to the values of hidden node, learning rate and momentum coefficient. The results showed that performance of the TFD can be achieved up to 90% whereas MFCC is only 80%. Therefore, the TFD technique is chosen as the best technique to analyze and to extract features of the non-stationary signals such as the heart sounds signals 2006-05 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/2724/1/MasnaniMohamedMFKE2006.pdf Mohamed, Masnani (2006) Features extraction of heart sounds using timefrequency distribution and mel-frequency cepstrum coefficient. Masters thesis, Universiti Teknologi Malaysia, Faculty of Electrical Engineering.
spellingShingle TK Electrical engineering. Electronics Nuclear engineering
Mohamed, Masnani
Features extraction of heart sounds using timefrequency distribution and mel-frequency cepstrum coefficient
title Features extraction of heart sounds using timefrequency distribution and mel-frequency cepstrum coefficient
title_full Features extraction of heart sounds using timefrequency distribution and mel-frequency cepstrum coefficient
title_fullStr Features extraction of heart sounds using timefrequency distribution and mel-frequency cepstrum coefficient
title_full_unstemmed Features extraction of heart sounds using timefrequency distribution and mel-frequency cepstrum coefficient
title_short Features extraction of heart sounds using timefrequency distribution and mel-frequency cepstrum coefficient
title_sort features extraction of heart sounds using timefrequency distribution and mel frequency cepstrum coefficient
topic TK Electrical engineering. Electronics Nuclear engineering
url http://eprints.utm.my/2724/1/MasnaniMohamedMFKE2006.pdf
url-record http://eprints.utm.my/2724/
work_keys_str_mv AT mohamedmasnani featuresextractionofheartsoundsusingtimefrequencydistributionandmelfrequencycepstrumcoefficient