Hybrid fastslam approach using genetic algorithm and particle swarm optimization for robotic path planning

Simultaneous Localization and Mapping (SLAM) is an algorithmic technique being used for mobile robot to build and create a relative map in an unknown environment. FastSLAM is one of the SLAM algorithms, which is capable of speeding up convergence in robot’s path planning and environment map estimati...

पूर्ण विवरण

ग्रंथसूची विवरण
मुख्य लेखक: Khairuddin, Alif Ridzuan
स्वरूप: थीसिस
भाषा:अंग्रेज़ी
प्रकाशित: 2016
विषय:
ऑनलाइन पहुंच:http://eprints.utm.my/78454/1/AlifRidzuanKhairuddinMFC2017.pdf
_version_ 1846217925533368320
author Khairuddin, Alif Ridzuan
author_facet Khairuddin, Alif Ridzuan
author_sort Khairuddin, Alif Ridzuan
description Simultaneous Localization and Mapping (SLAM) is an algorithmic technique being used for mobile robot to build and create a relative map in an unknown environment. FastSLAM is one of the SLAM algorithms, which is capable of speeding up convergence in robot’s path planning and environment map estimation. Besides, it is popular for its higher accuracy compared to other SLAM algorithms. However, the FastSLAM algorithm suffers from inconsistent results due to particle depletion problem over time. This research study aims to minimize the inconsistency in FastSLAM algorithm using two soft computing techniques, which are particle swarm optimization (PSO) and genetic algorithm (GA). To achieve this goal, a new hybrid approach based on the mentioned soft computing techniques is developed and integrated into the FastSLAM algorithm to improve its consistency. GA is used to optimize particle weight while PSO is used to optimize the robot’s estimation in generating an environment map to minimize particle depletion in FastSLAM algorithm. The performance of the proposed hybrid approach is evaluated using root mean square error (RMSE) analysis to measure degree of error during estimation of robot and landmark position. The results are verified using margin error analysis. With the percentage error analysis results, the new hybrid approach is able to minimize the problems in FastSLAM algorithm and managed to reduce the errors up to 33.373% for robot position and 27.482% for landmark set position.
format Thesis
id uthm-78454
institution Universiti Teknologi Malaysia
language English
publishDate 2016
record_format eprints
spelling uthm-784542018-08-26T11:56:26Z http://eprints.utm.my/78454/ Hybrid fastslam approach using genetic algorithm and particle swarm optimization for robotic path planning Khairuddin, Alif Ridzuan QA75 Electronic computers. Computer science Simultaneous Localization and Mapping (SLAM) is an algorithmic technique being used for mobile robot to build and create a relative map in an unknown environment. FastSLAM is one of the SLAM algorithms, which is capable of speeding up convergence in robot’s path planning and environment map estimation. Besides, it is popular for its higher accuracy compared to other SLAM algorithms. However, the FastSLAM algorithm suffers from inconsistent results due to particle depletion problem over time. This research study aims to minimize the inconsistency in FastSLAM algorithm using two soft computing techniques, which are particle swarm optimization (PSO) and genetic algorithm (GA). To achieve this goal, a new hybrid approach based on the mentioned soft computing techniques is developed and integrated into the FastSLAM algorithm to improve its consistency. GA is used to optimize particle weight while PSO is used to optimize the robot’s estimation in generating an environment map to minimize particle depletion in FastSLAM algorithm. The performance of the proposed hybrid approach is evaluated using root mean square error (RMSE) analysis to measure degree of error during estimation of robot and landmark position. The results are verified using margin error analysis. With the percentage error analysis results, the new hybrid approach is able to minimize the problems in FastSLAM algorithm and managed to reduce the errors up to 33.373% for robot position and 27.482% for landmark set position. 2016-10 Thesis NonPeerReviewed application/pdf en http://eprints.utm.my/78454/1/AlifRidzuanKhairuddinMFC2017.pdf Khairuddin, Alif Ridzuan (2016) Hybrid fastslam approach using genetic algorithm and particle swarm optimization for robotic path planning. PhD thesis, Universiti Teknologi Malaysia, Faculty of Computing. http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:109000
spellingShingle QA75 Electronic computers. Computer science
Khairuddin, Alif Ridzuan
Hybrid fastslam approach using genetic algorithm and particle swarm optimization for robotic path planning
title Hybrid fastslam approach using genetic algorithm and particle swarm optimization for robotic path planning
title_full Hybrid fastslam approach using genetic algorithm and particle swarm optimization for robotic path planning
title_fullStr Hybrid fastslam approach using genetic algorithm and particle swarm optimization for robotic path planning
title_full_unstemmed Hybrid fastslam approach using genetic algorithm and particle swarm optimization for robotic path planning
title_short Hybrid fastslam approach using genetic algorithm and particle swarm optimization for robotic path planning
title_sort hybrid fastslam approach using genetic algorithm and particle swarm optimization for robotic path planning
topic QA75 Electronic computers. Computer science
url http://eprints.utm.my/78454/1/AlifRidzuanKhairuddinMFC2017.pdf
url-record http://eprints.utm.my/78454/
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:109000
work_keys_str_mv AT khairuddinalifridzuan hybridfastslamapproachusinggeneticalgorithmandparticleswarmoptimizationforroboticpathplanning